首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pepstatin A-sensitive enzyme involved in yolk formation was purified from the masu salmon (Oncorhynchus masou) ovary using in vitro generation of yolk proteins from purified vitellogenin to assay enzymatic activity. Purification of the enzyme involved precipitation of ovarian extracts by water and ammonium sulfate followed by five steps of column chromatography. After SDS-PAGE and Western blotting, the purified enzyme appeared as a single approximately 42 kDa band that was immunoreactive to anti-human cathepsin D. The course of proteolytic cleavage of the three major yolk proteins (lipovitellin, beta'-component, and phosvitin) in fertilized masu salmon and Sakhalin taimen (Hucho perryi) eggs and embryos was visualized by SDS-PAGE and Western blotting using specific antisera. Major yolk protein bands appeared in positions corresponding to 92 kDa, 68 kDa, and 22 kDa (lipovitellin-derived peptides), as well as 17 kDa (beta'-component). During embryo development, the 92 kDa and 22 kDa bands gradually decreased in intensity, becoming undetectable in alevins. The 68 kDa band and a minor 24 kDa band became more intense after the eyed stage. Two additional peptides, corresponding to 40 and 28 kDa, newly appeared in alevins. During embryonic growth, the beta'-component band (17 kDa) persisted and phosvitin appeared to be progressively dephosphorylated. In vitro analysis of lipovitellin proteolysis indicated that the enzyme involved is a Pefabloc SC-sensitive serine protease. These results demonstrate, for the first time, that a cathepsin D-like protease and serine proteases play key roles in yolk formation and degradation, respectively, in salmonid fishes.  相似文献   

2.
A superficially located periventricular proliferative area with PCNA-immunopositive (PCNA+) cells, which corresponds to the pallial periventricular zone (PVZ) of other fish species, including its dorsal, lateral, and medial compartments, is discovered in the telencephalon of the juvenile masu salmon Oncorhynchus masou. The PCNA+ cells are also identified in the parenchyma of the masu salmon intact brain, and their maximum concentration is observed in the medial zone. After a mechanical injury, the zones of induced neurogenesis—neurogenic niches and sites of secondary neurogenesis surrounded by radial glial fibers—appear in the masu salmon telencephalon. The PVZ of the juvenile masu salmon pallium contains clusters of undifferentiated HuCD-immunopositive (HuCD+) neurons. A change in the HuCD+ cell topography is observed in the mechanically injured masu salmon telencephalon, namely, neurogenic niches in the lateral zone and an increase in the cell distribution density and cell migration patterns in the medial zone. A high level of persistent neurogenesis is characteristic of the juvenile masu salmon brain.  相似文献   

3.
We purified a thyroid-hormone-binding protein (THBP) from serum of masu salmon at the stage of smoltification when the concentrations of endogenous thyroid hormones in plasma reach the highest levels. All steps of sequential column chromatography suggest that this THBP is responsible for most L-3,5,3'-triiodothyronine-binding activity in serum at this stage. The molecular mass of this protein was estimated to be 60 kDa by gel filtration but only 15 kDa by SDS/PAGE, which suggests that it is comprised of four identical subunits. The amino acid sequence of its N-terminal portion was highly similar to those of vertebrate transthyretins. These molecular features indicate that masu salmon THBP is a homolog of transthyretins from tetrapods. However, in contrast with mammalian transthyretins, the affinity of masu salmon transthyretin for L-3,5,3'-triiodothyronine was three times greater than for L-thyroxine. This rank order affinity is similar to that of avian and frog transthyretins. Scatchard analysis revealed that masu salmon transthyretin possesses a single class of binding site for L-3,5,3'-triiodothyronine, with a Kd of 13.8 nM at 0 degrees C. Taken together with the data reported by Chang et al. [Eur. J. Biochem. (1999) 259, 534-542], these results suggest that transthyretin has changed from a L-3,5, 3'-triiodothyronine-carrier protein to a L-thyroxine-carrier protein during mammalian evolution.  相似文献   

4.
Three cDNAs, each encoding a different choriogenin (Chg), were isolated from a female masu salmon (Oncorhynchus masou) liver cDNA library. Two of the cDNA clones, Chg Halpha and Chg Hbeta, showed a close relationship and contained the typical domains of zona pellucida (ZP) B genes in fish, namely proline and glutamine rich repeats, a trefoil factor family domain, and a ZP domain. Specific antibodies against recombinant Chg H products (rmHalpha and rmHbeta) were generated to elucidate the relationship between the Chg H cDNAs and two types of serum Chg H protein, which were previously purified and characterized, and designated as very-high-molecular-weight vitelline envelope-related protein (vhVERP) and Chg H of masu salmon. The immunobiochemical analyses revealed that the Chg Halpha and Chg Hbeta clones encoded vhVERP and Chg H proteins, respectively. The third cDNA clone (Chg L) appeared to be a ZPC gene and, by mapping the N-terminal sequence of purified Chg L, was shown to encode serum Chg L protein. Various types of heteromultimer of the three Chgs were identified immunologically as high molecular weight chorion components, indicating the involvement of complex heterodimerization of multiple Chgs in the construction of chorion architecture in masu salmon.  相似文献   

5.
Three vitelline envelope-related proteins (VERPs), very-high-molecular-weight VERP (vhVERP), high-molecular-weight VERP (hVERP) and low-molecular-weight VERP (lVERP) were purified from female masu salmon serum. The apparent molecular weights of vhVERP, hVERP and lVERP, in their native state, were 520, 88 and 54 kDa, respectively, by gel-filtration chromatography. Very-high-molecular-weight VERP comprises two subunits, corresponding to 175 and 126 kDa. On SDS-PAGE, hVERP and lVERP migrate at 53 and 47 kDa, respectively. Amino acid analysis of vhVERP and hVERP showed that they share a high content of glutamic acid and proline. By contrast, lVERP is rich in glutamic acid and asparatic acid. These features are in good agreement with the amino acid composition of the vitelline envelope. Immuno-biochemical analysis suggested that vhVERP is derived from hVERP by polymerization and/or aggregation. Antibodies against hVERP and lVERP specifically immunostained the vitelline envelope and liver of female masu salmon. In addition, both hVERP and lVERP were induced in the serum of estrogen-treated male fish. Taken together, it is suggested that hVERP and lVERP are homologous molecules with choriogenin H and choriogenin L in medaka, respectively. These results indicate that hVERP and lVERP are precursor proteins to the vitelline envelope (choriogenins) in masu salmon.  相似文献   

6.
The olfactory system of fish is extremely important as it is able to recognize and distinguish a vast of odorous molecules involved in wide ranges of behaviors including reproduction, homing, kin recognition, feeding and predator avoidance; all of which are paramount for their survival. We cloned and characterized one type olfactory receptors (ORs) from five congeneric salmonids: lacustrine sockeye salmon (Oncorhynchus nerka), pink salmon (O. gorbuscha), chum salmon (O. keta), masu salmon (O. masou) and rainbow trout (O. mykiss). Lacustrine sockeye salmon olfactory receptor 1 (LSSOR1) showed high sequence homology to the OR subfamily, and was expressed only in the olfactory epithelium (as indicated by PCR amplified genomic DNA and cDNA). OR genes from the five salmonids examined all showed strong homology (96-99%) to each other. Hypervariable regions, believed to be ligand-binding pockets, showed homologous completely matched amino acid sequences except for one amino acid in pink salmon olfactory receptor 1 (PSOR1), revealing that these ORs may be well conserved among salmon species. These results suggest that the isolated 5 salmonid ORs might play an important role in salmon life cycles.  相似文献   

7.
Bandoh H  Kida I  Ueda H 《PloS one》2011,6(1):e16051
Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka). The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl), which are homologous to the medial pallium (hippocampus) in terrestrial vertebrates. Although the concentration of L-serine (1 mM) in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM), the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.  相似文献   

8.
Distribution of nitroxidergic and H2S-producing neurons in the brain of the masu salmon Oncorhynchus masou was studied by methods of histochemical labeling of NADPH-diaphorase and by immunohistochemical labeling of the neuronal nitric oxide synthase and cystathionine β-synthase (CBS). The established distribution of CBS and nNOS/NADPH-d of neurons and fibers in the masu salmon telencephalon, optic tectum, and cerebellum allows suggesting that the NO- and H2S-producing systems represent individual, non-overlapping neuronal complexes performing specialized functions in the activity of local neuronal networks. In the medullar part, the nNOS-ir and NADPH-d-positive neurons were detected in the composition of viscerosensory (V, VII, and IX–X) and visceromotor (III, IV, and VI) nuclei of craniocerebral nerves, octavolateral afferent complex, reticulospinal neurons, and medial reticular formation. CBS in the masu salmon medulla was revealed in neurons of the nerve X nucleus, reticulospinal neurons, and ventrolateral reticular formation. Distribution of NO-ergic and H2S-producing neurons in the masu salmon medullar nuclei indicates that NO in masu salmon is the predominant neuromodulator of the medullar viscerosensory systems, while H2S seems to modulate only the descending motor systems. The results of the performed study allow suggesting that NO in the masu salmon medulla periventricular area can act as a regulator of postnatal ontogenesis.  相似文献   

9.
The expression of synaptic vesicle exocytosis-regulator SNARE complex component genes (snap25, stx1 and vamp2) was examined in the olfactory nervous system during seaward and homeward migration by pink salmon (Oncorhynchus gorbuscha). The expression levels of snares in the olfactory organ were higher in seaward fry than in feeding and homeward adults, reflecting the development of the olfactory nervous system. The expression of snap25a, b and stx1a was upregulated or stable in the adult olfactory bulb and telencephalon. This upregulated expression suggested alterations in olfactory neuronal plasticity that may be related to the discrimination of natal rivers. The expression of stx1b was downregulated in the adult olfactory bulb, but remained stable in the adult telencephalon. The expression of vamp2 was initially strong in seaward fry, but was downregulated in adults in both the olfactory bulb and telencephalon. Pink salmon has the lowest diversity of maturation age, the largest population, and the most evolutional position in Pacific salmon (genus Oncorhynchus). The expression of snares in the olfactory center of pink salmon reflected the timing of sexual maturation and homeward migration. The present results and our previous studies indicate that snares show distinct expression patterns between two salmon species that depend on physiological and ecological features of migration.  相似文献   

10.
A salmonid olfactory system-specific protein (N24) that has been identified in lacustrine sockeye salmon (Oncorhynchus nerka) was characterized by biochemical and molecular biological techniques. N24 is a homodimer, and the intact molecular mass is estimated as approximately 43.3 kDa by gel filtration. Furthermore, N24 was located only in the cytosolic fraction of the olfactory tissues as determined by subcellular fractionation. cDNA encoding the lacustrine sockeye salmon N24 was isolated and sequenced. This cDNA contained a coding region encoding 216 amino acid residues and the molecular mass of this protein is calculated to be 242,224.77. The protein and nucleotide sequencing demonstrates the existence of a remarkable homology between N24 and glutathione S-transferase (GST; EC 2.5.1.18) class pi enzymes. Northern analysis showed that N24 mRNA with a length of 950 bases is expressed in lacustrine sockeye salmon olfactory epithelium. Olfactory receptor cells showed strong hybridization signals for N24 mRNA in the olfactory epithelium. N24 demonstrated glutathione binding activity in affinity-purified GST column experiments. The present study describes for the first time cDNA cloning of GST in fish olfactory epithelium.  相似文献   

11.
Recent studies suggest that hatchery-reared fish can have smaller brain-to-body size ratios than wild fish. It is unclear, however, whether these differences are due to artificial selection or instead reflect differences in rearing environment during development. Here we explore how rearing conditions influence the development of two forebrain structures, the olfactory bulb and the telencephalon, in juvenile Chinook salmon (Oncorhynchus tshawytscha) spawned from wild-caught adults. First, we compared the sizes of the olfactory bulb and telencephalon between salmon reared in a wild stream vs. a conventional hatchery. We next compared the sizes of forebrain structures between fish reared in an enriched NATURES hatchery and fish reared in a conventional hatchery. All fish were size-matched and from the same genetic cohort. We found that olfactory bulb and telencephalon volumes relative to body size were significantly larger in wild fish compared to hatchery-reared fish. However, we found no differences between fish reared in enriched and conventional hatchery treatments. Our results suggest that significant differences in the volume of the olfactory bulb and telencephalon between hatchery and wild-reared fish can occur within a single generation.  相似文献   

12.
We investigated the host selection mechanism of actinospore stages of 2 myxosporeans, Myxobolus arcticus and Thelohanellus hovorkai, infecting masu salmon (Oncorhynchus masou) and common carp (Cyprinus carpio), respectively. Discharge of the polar filaments and sporoplasm release by M. arcticus actinospores occurred within the first 5 min of exposure to skin mucus of masu salmon. The actinospores also reacted to the mucus of nonsusceptible fish, i.e., sockeye salmon (Oncorhynchus nerka) and goldfish (Carassius auratus), although the reactivity was comparatively lower. After exposure of masu, and sockeye and chum salmon (Oncorhynchus keta) to M. arcticus actinospores, the penetration of sporoplasms was observed in the fins and gills of masu and sockeye salmon to a similar extent and to a lesser extent in chum salmon. Thelohanellus hovorkai actinospores exhibited a slow response of sporoplasm release to common carp mucus as well as penetration into the gills of common carp. Neither chemoresponse to mucus of nonsusceptible fish (goldfish and sockeye salmon) nor sporoplasm invasion in goldfish was observed for T. hovorkai actinospores. These results indicate notable differences in the host selection at the time of entry between M. arcticus and T. hovorkai; the former responds quickly to fish mucus with low host specificity, whereas the latter was highly host specific in a dilatory reaction.  相似文献   

13.
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr – smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery‐reared upper growth modal juvenile Atlantic salmon at 3‐week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor‐specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory‐specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.  相似文献   

14.
Synopsis White suckers,Catastomus commersoni, use olfactory cues to return to the same spawning stream year after year. If we assume that they follow a model similar to the well-known salmon model, olfactory imprinting must occur very early in their development. We describe the time of migration from the nursery stream in relation to the development of the white sucker olfactory system to determine if the requisite anatomical structures are present which would permit imprinting. At hatching the olfactory placode is present and beginning to differentiate, the lumen of the olfactory capsule is starting to form, and the olfactory tract projects into the telencephalon. Larvae migrate approximately 2 weeks later or at a size of 14 mm TL. At this time olfactory cilia are present, the olfactory tract is robust and the telencephalon is beginning to differentiate. Therefore, it appears that the fundamental neural structures necessary for imprinting are present. A comparison with salmon, however, clearly demonstrates that the white sucker olfactory apparatus is not as well developed as that of salmon at time of migration. This raises the question of the ability of white suckers to imprint in the same manner as salmon and whether the salmonid model is applicable to white suckers. Alternative imprinting hypotheses are discussed.  相似文献   

15.
In two year classes of Willamette River spring chinook salmon, reared at the Willamette Hatchery, and two groups of Yakima River spring chinook salmon, one sampled from the Yakima River and the other reared in a hatchery, fish which had relatively high growth rates in the summer–autumn period smolted in the autumn as measured by increases in gill Na+ K+ AT Pase activity. In contrast, groups with relatively low growth rate did not smolt in the autumn. Plasma levels of insulin-like growth factor-I (IGF-I) showed discrete differences between groups, with high levels associated with increased gill Na+ K+ AT Pase activities. These results demonstrate that smolting is plastic in spring chinook salmon, occurring in the autumn or the spring. In addition, smolting appeared to be related to growth rate; however, the relationships shown were correlational and causal mechanisms were not elucidated. Yet, the results do indicate a relationship between growth, an endocrine growth factor and smolting, suggesting a mechanistic link between developmental plasticity and the environment mediated by the endocrine system.  相似文献   

16.
The ontogeny of gonadotropin-releasing hormone (GnRH) mRNA-producing neurons was studied in developing hybrid striped bass (white bass Morone chrysops female × striped bass Morone saxatilis male), 1–55 days post-fertilization (dpf), by whole-mount in situ hybridization. Neurons that produce salmon (s) GnRH were first detected at 32 h post-fertilization in the olfactory placodes. These neurons migrated posteriorly during development and reached their final position at the olfactory bulbs-telencephalon boundary, possibly the terminal nerve ganglion (TNg) by 11 dpf. First signal of chicken (c) GnRH-II neurons appeared in the midbrain 2 dpf and remained there throughout development. A signal of seabream (sb) GnRH mRNA was first detected at 21 dpf in the preoptic area (POA) and as a bilateral continuum along the ventral telencephalon at 32–55 dpf. The expression of all three forms of GnRH increased throughout development. These results suggest that cGnRH-II neurons originate in the mid-brain, and that sGnRH neurons originate in the olfactory placodes and migrate caudally to the TNg. Neurons that express sbGnRH seem to originate at the preoptic area and then to migrate anteriorly along the ventral telencephalon. An olfactory placodal origin of these neurons, however, cannot be ruled out.  相似文献   

17.
In this study, various solvent systems were applied to obtain a high and consistent recovery rate of low molecular weight plasma proteins (LMPP) from human plasma. A buffer system containing 7 M urea, 2 M thiourea, 25 mM NH4HCO3 + 20% ACN (pH 8.2) produced the highest recovery rate of LMPP. To validate the recovery of cut off membrane (COM) obtained using the urea buffer system, 27 different 30 kDa COMs were used to prepare the LMPP sample which were then subjected to 1‐D SDS‐PAGE. Statistical analysis showed that the buffer system with COM produced a consistent the recovery of LMPP. In addition, 2‐DE analysis was also conducted to determine the relative intensity of each protein spot. When molecular weight ranges over 30 kDa and under 30 kDa were evaluated, 953 and 587 protein spots were observed in the gels, respectively, resulting in a total of 1540 protein spots being resolved. Identification of the major proteins were then performed using a nano‐LC/MS system comprised of an HPLC system and an ESI‐quadrupole IT MS equipped with a nano‐ESI source.  相似文献   

18.
19.
Native membranes from human erythrocytes contain the following G proteins which are ADP-ribosylated by a number of bacterial toxins: Gi alpha and Go alpha (pertussis toxin), Gs alpha (cholera toxin), and three proteins of 27, 26 and 22 kDa (exoenzyme C3 from Clostridium botulinum). Three additional C3 substrates (18.5, 16.5 and 14.5 kDa) appeared in conditions of unrestrained proteolysis during hemolysis. SDS-PAGE separation of erythrocyte membrane proteins followed by electroblotting and incubation of nitrocellulose sheets with radiolabeled GTP revealed consistently four GTP-binding proteins with Mr values of 27, 26, 22 and 21 kDa. Although a 22 kDa protein was immunochemically identified as ras p21, the C3 substrate of 22 kDa is a different protein probably identifiable with a rho gene product. Accordingly, at least five distinct small molecular weight guanine nucleotide-binding proteins, whose functions are so far undetermined, are present in native human erythrocyte membranes.  相似文献   

20.
In spatial competition between individuals, neither fish sex nor body mass affected dominance status in masu salmon Oncorhynchus masou . In contrast, resting metabolic rate ( M R) was significantly correlated with dominance status, indicating that a high metabolic rate can increase the dominance rank of juvenile salmon. Whole animal growth rate was significantly correlated with M R, but not with initial body weight. This suggests that the body size of masu salmon is not a cause, but rather a consequence, of dominance status which is closely related to M R. The increment width between otolith daily rings was also significantly correlated with M R. Thus, the size of the Otolith may indicate the degree of M R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号