首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The Gram stain can be used to direct initial empiric antimicrobial therapy when complete culture is not available. This rapid test could prevent the initiation of inappropriate therapy and adverse outcomes. However, several studies have attempted to determine the value of the Gram stain in the diagnosis and therapy of bacterial infection in different populations of patients with ventilator-associated pneumonia (VAP) with conflicting results. The objective of this study is to evaluate the accuracy of the Gram stain in predicting the existence of Staphylococcus aureus infections from cultures of patients suspected of having VAP.

Methods

This prospective single-center open cohort study enrolled 399 patients from December 2005 to December 2010. Patients suspected of having VAP by ATS IDSA criteria were included. Respiratory secretion samples were collected by tracheal aspirate (TA) for standard bacterioscopic analysis by Gram stain and culture.

Results

Respiratory secretion samples collected by tracheal aspirates of 392 patients were analyzed by Gram stain and culture. When Gram-positive cocci were arranged in clusters, the sensitivity was 68.4%, specificity 97.8%, positive predictive value 88.1% and negative predictive value 92.8% for predicting the presence of Staphylococcus aureus in culture (p < 0.001).

Conclusions

A tracheal aspirate Gram stain can be used to rule out the presence of Staphylococcus aureus in patients with a clinical diagnosis of VAP with a 92.8% Negative Predictive Value. Therefore, 7.2% of patients with Staphylococcus aureus would not be protected by an empiric treatment that limits antimicrobial coverage to Staphylococcus aureus only when Gram positive cocci in clusters are identified.  相似文献   

2.
It proves that a purifed Anti-Microbial Factor (AMF) from human promyelocytes has strong activity on Gram(–) and Gram(+) bacteria, showing 0.5 (g/ml) of Minimal Bacterical Concentration (MBC) on bothE. coli andS. aureus. For mass production of AMF, chemostat cultivation is recommended to accumulate cells out of the reactor since it is an intracellular protein and its system requires only 1% serum in the medium. Its production process proves to be closely growth-related. 1.7×10–8 (g/viable cell/day) of maximum specific AMF production rate is estimated at 0.026 h–1 of dilution rate, maintaining 6×106 (viable cell/ml). Ca. 300 (mg/ml) of crude AMF can be obtained for 50 days of continuous cultivation under optimal conditions. The cell growth reaches relatively fast steady state.  相似文献   

3.
E Adams 《Stain technology》1975,50(4):227-231
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuschsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal violet-stained organisms with alcoholic safranin (0.25%) for 15 sec will distinguish Gram-positive bacteria (violet) from Gram-negative bacteria (pink). Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily decolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

4.
Summary Extraction of lipid by chloroform-methanol from Escherichia coli induces Gram positivity in the cells of this bacterium. It has been observed that approximately 1.5 times more lipid is extracted from Escherichia coli than from Staphylococcus aureus by this treatment. An increase of 1.5–1.8 fold in the retention of dye has been evident in the case of S. aureus where as this was 70–90 fold in the case of E. coli, which is 1/4th of the normal retention by S. aureus. The more lipid present in the cell wall or cell membrane, the less retention of dye seems to be exhibited by the bacteria. This also substantiates our model for Gram reaction presented in a previous communication.  相似文献   

5.
Summary Treatment with a solution of the detergent cetyl pyridinium chloride develops gram positivity in E. coli as is evident from the increased retention of crystal violet by the bacteria. Since cetyl pyridinium chloride has been found to remove larger quantity of lipid from E. coli than from the normal gram positive bacteria S. aureus, it is reasonable to think that lipid content in a bacteria may have an important role in determining the gram character of it. Gram negative bacteria generally contain more lipid than the gram positive ones.  相似文献   

6.
S. aureus serine proteinase inactivates human -1-proteinase inhibitor (-1-PI) by attacking a single peptide bond between Glu354 and Ala355 giving a modified inhibitor which is a tight complex of Mr=4,000 and 48,000 fragments. In the present paper we show that this proteolytically inactivated -1-PI is a potent chemotactic factor for human neutrophiles at a nanomolar concentration, and we discuss its potential involvement in the inflammatory reaction due to S. aureus infections.  相似文献   

7.
Recently, bacterial cellulose (BC) based wound dressing have raised significant interests in medical fields. However, to our best knowledge, it is apparent that the BC itself has no antibacterial activity. In this study, we optimized graphene oxide‐silver (GO‐Ag) nanohybrid synthesis using Response Surface Methodology and impregnate it to BC and carefully investigate their antibacterial activities against both the Gram‐negative bacteria Escherichia coli and the Gram‐positive bacteria Staphylococcus aureus. We discover that, compared to silver nanoparticles, GO‐Ag nanohybrid with an optimal GO suspension's pH and ratio is much more effective and shows synergistically enhanced, strong antibacterial activities at rather low dose. The GO‐Ag nanohybrid is more toxic to E. coli than that to S. aureus. The antibacterial and mechanical properties of BC/GO‐Ag composite are further investigated.  相似文献   

8.
Cells ofStaphylococcus aureus strain ISP 546, previously shown to express high binding of vitronectin (Vn), were shown also to bind radioactive iodine-labeled human lactoferrin (Lf). The binding was specific, and heat treatment ofS. aureus cells abolished Lf binding. When cells were preincubated with heparin (2.5 g/ml), binding of Vn and Lf was inhibited by more than 90%. Two other sulfated carbohydrate polymers, fucoidan and dextran sulfate (mol weights 5000 and 8000) inhibited binding of both iodine-labeled Vn and Lf by about 75% each. No synergistic inhibitory effect between heparin and fuocidan on Lf binding byS. aureus was detected. Mannose, mannoseamine and poly--sialic acid (colominic acid) inhibited Vn binding by about 40% but had no effect on Lf binding. A cell surface extract of ISP 546 inhibited Vn binding but did not affect Lf binding. Lf binding toS. aureus was inhibited by preincubation of the cells with Vn, and Vn binding toS. aureus was inhibited by preincubation with Lf. Our data indicate that Vn and Lf bind to different molecules on theS. aureus cell surface, involving heparin and other carbohydrate interactions.  相似文献   

9.
Toll‐like receptor 2 (TLR2) is regarded as the major innate immunity sensor in infections caused by the Gram‐positive bacterial pathogen Staphylococcus aureus. However, previous studies on the roles of TLR2 in S. aureus infections have been elusive and in part contradictory. It has remained particularly unclear if bacterial lipoproteins, the major TLR2 ligands, could serve as antigens with intrinsic adjuvant property for the development of protective vaccines. The study by Vu et al. published in this issue of Proteomics analyzed the antibody and T‐cell responses in human sera against major S. aureus lipoproteins. Notably, even lipoproteins released to culture filtrates at similar levels as established immunodominant antigens elicited only very weak or no detectable antibody and T‐cell responses, indicating that the potent TLR2‐stimulating capacity of S. aureus lipoproteins does not promote and may rather impair robust immune responses so lipoprpteins. Among several potential explanations it is tempting to speculate that the role of TLR2 in S. aureus infections may be more complex and more ambiguous than previously thought. The study of Vu et al. may thus provoke more detailed investigations on the roles of lipoproteins and TLR2 in innate and adaptive immunity against bacterial pathogens.  相似文献   

10.
Gram stains were performed on strains of Actinomyces bovis, Actinomyces viscosus, Arthrobacter globiformis, Bacillus brevis, Butyrivibrio fibrisolvens, Clostridium tetani, Clostridium thermosaccharolyticum, Corynebacterium parvum, Mycobacterium phlei, and Propionibacterium acnes, using a modified Gram regimen that allowed the staining process to be observed by electron microscopy (J. A. Davies, G. K. Anderson, T. J. Beveridge, and H. C. Clark, J. Bacteriol. 156:837-845, 1983). Furthermore, since a platinum salt replaced the iodine mordant of the Gram stain, energy-dispersive X-ray spectroscopy could evaluate the stain intensity and location by monitoring the platinum signal. These gram-variable bacteria could be split into two groups on the basis of their staining responses. In the Actinomyces-Arthrobacter-Corynebacterium-Mycobacterium-Propionibacterium group, few cells became gram negative until the exponential growth phase; by mid-exponential phase, 10 to 30% of the cells were gram negative. The cells that became gram negative were a select population of the culture, had initiated septum formation, and were more fragile to the stress of the Gram stain at the division site. As cultures aged to stationary phase, there was a relatively slight increase toward gram negativity (now 15 to 40%) due to the increased lysis of nondividing cells by means of lesions in the side walls; these cells maintained their rod shape but stained gram negative. Those in the Bacillus-Butyrivibrio-Clostridium group also became gram negative as cultures aged but by a separate set of events. These bacteria possessed more complex walls, since they were covered by an S layer. They stained gram positive during lag and the initial exponential growth phases, but as doubling times increased, the wall fabric underlying the S layer became noticeably thinner and diffuse, and the cells became more fragile to the Gram stain. By stationary phase, these cultures were virtually gram negative.  相似文献   

11.

Objectives

A new solvent-tolerant species, Staphylococcus aureus, was isolated and characterized during the screening of butanol-tolerant microorganisms.

Results

Three isolates of S. aureus were obtained as contaminants during improvement of butanol tolerance of E. coli K12. Their cell dry weights were 135 % that of K12 in the absence of butanol stress. S. aureus had a growth advantage over K12 when cultured with various concentrations of butanol. It can tolerate up to 3 % (v/v) butanol, while most solventogenic bacteria can tolerate only 2 % (v/v) butanol. The addition of 10–20 g glucose/l enhanced its butanol tolerance. The relative cell biomass of the S. aureus was 71–306 % that of E. coli under 5.5–10 % (v/v) ethanol stress, indicating ethanol resistance.

Conclusions

This is the first study to observe butanol-tolerant S. aureus. As this organism can be genetically manipulated, it could have a wide array of applications.
  相似文献   

12.
The objective of this study was to combine pressure (345 MPa) with heat (50 C), and bacteriocins (5000 AU/ml sample) for a short time (5 min) for the inactivation of relatively pressure-resistant strains of four foodborne pathogens: Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella in pasteurized milk and orange juice. Without bacteriocin addition, 5.5 log-cycle reduction was obtained for S. aureus 485 in milk whereas more than 8 log-cycle reduction was achieved for all the other strains studied. After storage of samples for 24 h at 4 C, S. aureus 765 also gave positive results on selective media, where no growth was observed for all the other micro-organisms assayed. Incubation of the same pressurized samples at 37 C for 48 h showed growth of L. monocytogenes strains in addition to S. aureus strains, where still no growth was observed for E. coli O157:H7 and Salmonella strains in their respective selective media. For orange juice samples, more than 8 log-cycle reduction was achieved for all the bacterial species studied. No growth was seen for these species on their respective selective media agar plates after storage at 4 C for 24 h and at 37 C for 48 h. When a bacteriocin-based biopreservative (BP1) was combined with pressurization, more than 8 log-cycle reduction in cell population of the resistant strains of S. aureus and L. monocytogenes were achieved in milk after pressurization. Milk samples were stored at 25 C up to 30 days to test the effect of treatment and samples showed no growth whereas all the controls were positive.  相似文献   

13.
Lipoteichoic acid (LTA) is an important cell wall component of Gram‐positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate‐chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two‐hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi‐enzyme complex and providing further evidence for the co‐ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co‐ordination with cell division, while glycolipid synthesis takes place throughout the membrane.  相似文献   

14.
The continuing increase in the incidence of multi drug resistant pathogenic bacteria and shortage of new antimicrobial agents are the prime driver in efforts to identify the novel antimicrobial classes. In vitro antibacterial activity of 4-phenyl-1-(2-phenylallyl) pyridinium bromide was tested against Gram positive Staphylococcus aureus, Streptococcus species, Bacillus subtilis, and Gram negative Klebsiella aerogenes and Escherichia coli using disk diffusion method. Among them S. aureus showed strong antibacterial activity (21.99 ± 0.03 mm) while E. coli showed very little activity (8.97 ± 0.06 mm) towards the compound. The MIC of 4-phenyl-1-(2-phenyl-allyl)-pyridinium bromide for 90% S. aureus was ≤20 μg/ml and was compared with phenoxymethylpenicillin, cloxacillin, erythromycin and vancomycin. When 4-phenyl-1-(2-phenyl-allyl)pyridinium bromide showed MIC at ≤20 μg/ml, all others showed MIC at ≤100 μg/ml. Strong antibacterial activity of 4-phenyl-1-(2-phenyl-allyl)pyridinium bromide against S. aureus indicates that there is a possibility to use it as an effective antibacterial agent.  相似文献   

15.

Background

Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.

Methodology/Principal Findings

This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50–200 µg/mL, which were well below the concentrations required to limit bacterial growth (530–1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.

Conclusions/Significance

These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections.  相似文献   

16.
Broad functional genomic studies call for comprehensive and powerful data repositories for storage of genome sequences, experimental information, protein identification data, protein properties and expression values. The better such data repositories can integrate and display complex data in a clear and structured way the more biologically meaningful conclusions or novel hypotheses can be derived from extensive omics data sets. This work presents the web accessible database system Protecs and how it was used to support analysis of 50 samples drawn from four Staphylococcus aureus cultivations under anaerobiosis. Protecs incorporates findings from visualization science, e.g. micro charts and heat maps in the user interface. Its integrated tools for expression data analysis in combination with TIGR Multi Experiment Viewer were used to highlight similar gene expression profiles in single or multiple experiments based on the continuously updated S. aureus master gel. Raw data analysis results are available online at www.protecs.uni‐greifswald.de . Our meta‐study revealed that S. aureus responds in different anaerobiotic experimental setups (growth without oxygen; growth without oxygen but with supplemental pyruvate and uracil; growth without oxygen but with NO; growth without oxygen but with NO and without functional nreABC genes) with a general anaerobiosis response. Among others, this response is characterized by an induction of fermentation enzymes (PflB, Ldh1, SACOL0135, SACOL0660) as well as the response regulator SrrA. Interestingly, especially genes with a high codon adaptation index highly overlap with anaerobically induced genes.  相似文献   

17.

Background

Staphylococci belong to the most important pathogens causing implant-associated infections. Colonization of the implanted medical devices by the formation of a three-dimensional structure made of bacteria and host material called biofilm is considered the most critical factor in these infections. To form a biofilm, bacteria first attach to the surface of the medical device, and then proliferate and accumulate into multilayered cell clusters. Biofilm accumulation may be mediated by polysaccharide and protein factors.

Methology/Principal Findings

The information on Staphylococcus aureus protein factors involved in biofilm accumulation is limited, therefore, we searched the S. aureus Col genome for LPXTG-motif containing potential surface proteins and chose the so far uncharacterized S. aureus surface protein C (SasC) for further investigation. The deduced SasC sequence consists of 2186 amino acids with a molecular mass of 238 kDa and has features typical of Gram-positive surface proteins, such as an N-terminal signal peptide, a C-terminal LPXTG cell wall anchorage motif, and a repeat region consisting of 17 repeats similar to the domain of unknown function 1542 (DUF1542). We heterologously expressed sasC in Staphylococcus carnosus, which led to the formation of huge cell aggregates indicative of intercellular adhesion and biofilm accumulation. To localize the domain conferring cell aggregation, we expressed two subclones of sasC encoding either the N-terminal domain including a motif that is found in various architectures (FIVAR) or 8 of the DUF1542 repeats. SasC or its N-terminal domain, but not the DUF1542 repeat region conferred production of huge cell aggregates, higher attachment to polystyrene, and enhanced biofilm formation to S. carnosus and S. aureus. SasC does not mediate binding to fibrinogen, thrombospondin-1, von Willebrand factor, or platelets as determined by flow cytometry.

Conclusions/Significance

Thus, SasC represents a novel S. aureus protein factor involved in cell aggregation and biofilm formation, which may play an important role in colonization during infection with this important pathogen.  相似文献   

18.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


19.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号