首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salmonella species represent a leading cause of gastroenteritis worldwide. More recently, they have been proposed as putative vaccine delivery vehicles in humans. Oral infection with Salmonella leads to invasion of the intestinal epithelial barrier and subsequent interaction with mucosal macrophages. In this study, we investigated the fate of Salmonella typhimurium-infected human macrophages differentiated from blood monocytes by GM-CSF. Wild type S. typhimurium strain SL1344 induced macrophage surface blebbing and caused the release of host cytoplasmic lactate dehydrogenase beginning 30 min post-infection. Three hours later more than 80% of the macrophages in the culture were killed. In contrast, during the same period, macrophages infected with the non-invasive S. typhimurium strain BJ66 remained viable. Chromatin fragmentation is a hallmark of cells undergoing apoptosis. Using TUNEL analysis, we observed chromatin fragmentation in macrophages infected with SL1344 but not in BJ66 infected cells. Consistent with this observation, we found that pretreatment of human macrophages with an inhibitor of caspase-3, a member of the pro-apoptotic enzyme family shown to be involved in S. typhimurium-induced killing of mouse macrophages, reduced SL1344-mediated cytotoxicity by 40%. Our study provides the first evidence that invasive S. typhimurium induces apoptosis in human macrophages that were differentiated from blood monocytes by GM-CSF, and that cell death is a caspase-dependent phenomenon.  相似文献   

3.
Abstract Infection of Madin-Darby canine kidney epithelial cell monolayers with Salmonella typhimurium SL1344 for 60 min results in widespread bacterial invasion which is associated with remodelling of the apical cell membrane to form 'membrane ruffles'. Treatment of Madin-Darby canine kidney cell monolayers with the protein kinase inhibitor staurosporine resulted in a 12-fold increase in the number of adhered bacteria without significantly affecting bacterial invasion. Staurosporine treatment also significantly increased both the number and size of membrane ruffles. As S. typhimurium adhere preferentially to these areas of membrane lacking microvilli, the increased extent of membrane ruffling may explain the increased bacterial adherence. These data provide evidence that the propagation of membrane ruffles during S. typhimurium infection is modulated by changes in the phosphorylation state of host proteins.  相似文献   

4.
Salmonella typhimurium, like many other intracellular pathogens, is capable of inducing its own uptake into non-phagocytic cells by a process termed invasion, and residing within a membrane-bound inclusion. During invasion it causes significant rearrangement of the host cytoskeleton, indicating that signals are transduced between the bacterium and the host cell cytoplasm, across the eukaryotic cell membrane. We found that intracellular inositol phosphate concentrations in HeLa cells increased during S. typhimurium entry and returned to normal levels after bacterial internalization. A chelator of intracellular calcium (BAPTA/AM) blocked S. typhimurium uptake into HeLa epithelial cells, but extracellular calcium chelators (BAPTA, EGTA, EDTA) had no effect on bacterial invasion. These results indicate that S. typhimurium may activate host cell phospholipase C activity to form inositol phosphates which in turn stimulate release of intracellular calcium stores to facilitate bacterial uptake.  相似文献   

5.
The involvement of tumor necrosis factor in immunity to Salmonella infection   总被引:12,自引:0,他引:12  
The role of TNF in immunity to Salmonella in mice was studied. Antiserum specific for murine TNF was raised and used to neutralize TNF activity in vivo. Injection of this serum into mice infected with the moderately mouse virulent Salmonella typhimurium strain M525 caused exacerbation of disease. Such treatment had no effect on the course of an infection with an attenuated S. typhimurium aroA (strain SL3261) mutant. However, the protection afforded by immunisation with live SL3261 against challenge with the virulent parent strain (SL1344) was abolished by anti-TNF antiserum. Interestingly both early (3 wk) immunity and late (10 wk) immunity was neutralized by such treatment. Inasmuch as early immunity is considered to be nonspecific and macrophage-mediated while late immunity is considered to be serotype-specific and T cell mediated, this suggests that TNF plays a role in protection from Salmonellosis in both cases.  相似文献   

6.
鼠伤寒沙门氏菌SL7207 SifA-突变株的构建和鉴定   总被引:3,自引:1,他引:3  
鼠伤寒沙门氏菌SifA^-基因突变株的特点是能进入真核细胞的胞液。利用P22噬菌体转导技术构建了鼠伤寒沙门氏菌疫苗株SL7207的SifA^-突变株SL7207,该突变株与SL7207有着相似的体外生长曲线和细胞侵袭力,SL7207。在MDCK上皮细胞中的增殖能力增强,但在RAW264.7巨噬细胞中的生存能力减弱。小鼠毒力试验显示SL7207。在BALB/c小鼠体内毒力下降。仅SL7207在体外可向RAW264.7巨噬细胞递送真核表达质粒。SL7207的构建为重组沙门氏菌疫苗载体的研制提供了一个新的选择。  相似文献   

7.
Small non-coding regulatory RNAs (sRNAs) have been studied in many bacterial pathogens during infection. However, few studies have focused on how intracellular pathogens modulate sRNA expression inside eukaryotic cells. Here, we monitored expression of all known sRNAs of Salmonella enterica serovar Typhimurium (S. Typhimurium) in bacteria located inside fibroblasts, a host cell type in which this pathogen restrains growth. sRNA sequences known in S. Typhimurium and Escherichia coli were searched in the genome of S. Typhimurium virulent strain SL1344, the subject of this study. Expression of 84 distinct sRNAs was compared in extra- and intracellular bacteria. Non-proliferating intracellular bacteria upregulated six sRNAs, including IsrA, IsrG, IstR-2, RyhB-1, RyhB-2 and RseX while repressed the expression of the sRNAs DsrA, GlmZ, IsrH-1, IsrI, SraL, SroC, SsrS(6S) and RydC. Interestingly, IsrH-1 was previously reported as an sRNA induced by S. Typhimurium inside macrophages. Kinetic analyses unraveled changing expression patterns for some sRNAs along the infection. InvR and T44 expression dropped after an initial induction phase while IstR-2 was induced exclusively at late infection times (> 6 h). Studies focused on the Salmonella-specific sRNA RyhB-2 revealed that intracellular bacteria use this sRNA to regulate negatively YeaQ, a cis-encoded protein of unknown function. RyhB-2, together with RyhB-1, contributes to attenuate intracellular bacterial growth. To our knowledge, these data represent the first comprehensive study of S. Typhimurium sRNA expression in intracellular bacteria and provide the first insights into sRNAs that may direct pathogen adaptation to a non-proliferative state inside the host cell.  相似文献   

8.
AIMS: The purpose of this study was to investigate the antibacterial activity of the Xynotyri cheese isolate Lactobacillus plantarum ACA-DC287 using a set of in vitro and in vivo assays. METHODS AND RESULTS: The co-culture of L. plantarum strain ACA-DC287 and Salmonella enterica serovar Typhimurium strain SL1344 results in the killing of the pathogen. The killing activity was produced mainly by non-lactic acid molecule(s) that were present in the cell-free culture supernatant of the L. plantarum strain ACA-DC287. The culture of the L. plantarum strain ACA-DC287 inhibited the penetration of S. typhimurium SL1344 into cultured human enterocyte-like Caco-2/TC7 cells. In conventional mice infected with S. typhimurium SL1344, the intake of L. plantarum strain ACA-DC287 results in a decrease in the levels of Salmonella associated with intestinal tissues or those present in the intestinal contents. In germ-free mice, the L. plantarum strain ACA-DC287 colonized the gastrointestinal tract. CONCLUSIONS: The L. plantarum strain ACA-DC287 strain exerts anti-Salmonella activity similar that of the established probiotic strains Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029 and Lactobacillus johnsonii La1. SIGNIFICANCE AND IMPACT OF THE STUDY: The observation that a selected cheese Lactobacillus strain exerted antibacterial activity that was similar to those of probiotic Lactobacillus strains, is of interest for the use of this strain as an adjunct strain for the production of health-giving cheeses.  相似文献   

9.
AIMS: The purpose of this study was to investigate in vitro the antibacterial activity of the Lactobacillus helveticus strain KS300 against vaginosis-associated bacteria including Gardnerella vaginalis and Prevotella bivia, uropathogenic Escherichia coli, and diarrhoeagenic Salmonella enterica serovar Typhimurium. METHODS AND RESULTS: The KS300 strain inhibited the growth of G. vaginalis, P. bivia, S. typhimurium, and pathogenic E. coli. After direct co-culture, data show that the Lactobacillus strain decreased the viability of G. vaginalis, P. bivia, S. typhimurium, and pathogenic E. coli. The adhering KS300 strain inhibited the adhesion of G. vaginalis DSM 4944 and uropathogenic Dr-positive E. coli IH11128 onto HeLa cells. Moreover, the KS300 strain inhibited the internalization of uropathogenic Dr-positive E. coli IH11128 within HeLa cells and S. typhimurium SL1344 within Caco-2/TC7 cells. CONCLUSIONS: The findings demonstrate that L. helveticus strain KS300 is adhesive onto cultured human cells and has antagonistic activities against vaginosis-associated, uropathogenic and diarrhoeagenic pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Adhering L. helveticus strain KS300 is a potential probiotic strain displaying a strain-specific array of in vitro antibacterial activities.  相似文献   

10.
11.
Gene transfer between separate lineages of a bacterial pathogen can promote recombinational divergence and the emergence of new pathogenic variants. Temperate bacteriophages, by virtue of their ability to carry foreign DNA, are potential key players in this process. Our previous work has shown that representative strains of Salmonella typhimurium (LT2, ATCC14028 and SL1344) are lysogenic for two temperate bacteriophages: Gifsy-1 and Gifsy-2. Several lines of evidence suggested that both elements carry genes that contribute to Salmonella virulence. One such gene, on the Gifsy-2 prophage, codes for the [Cu, Zn] superoxide dismutase SodCI. Other putative pathogenicity determinants were uncovered more recently. These include genes for known or presumptive type III-translocated proteins and a locus, duplicated on both prophages, showing sequence similarity to a gene involved in Salmonella enteropathogenesis (pipA). In addition to Gifsy-1 and Gifsy-2, each of the above strains was found to harbour a specific set of prophages also carrying putative pathogenicity determinants. A phage released from strain LT2 and identified as phage Fels-1 carries the nanH gene and a novel sodC gene, which was named sodCIII. Strain ATCC14028 releases a lambdoid phage, named Gifsy-3, which contains the phoP/phoQ-activated pagJ gene and the gene for the secreted leucine-rich repeat protein SspH1. Finally, a phage specifically released from strain SL1344 was identified as SopEPhi. Most phage-associated loci transferred efficiently between Salmonella strains of the same or different serovars. Overall, these results suggest that lysogenic conversion is a major mechanism driving the evolution of Salmonella bacteria.  相似文献   

12.
Strains ATCC 14028 and SL1344 of Salmonella enterica serovar Typhimurium are more virulent than LT2 in the BALB/c mouse model. Virulence plasmid swapping between strains ATCC 14208, LT2, and SL1344 does not alter their competitive indexes during mouse infection, indicating that the three plasmids are functionally equivalent, and that their contribution to virulence is independent from the host background. Strains ATCC 14028 and LT2 are more efficient than SL1344 as conjugal donors of the virulence plasmid. Virulence plasmid swapping indicates that reduced ability of conjugal transfer is a property of the SL1344 plasmid, not of the host strain. An A→V amino acid substitution in the TraG protein appears to be the major cause that reduces conjugal transfer in the virulence plasmid of SL1344. Additional sequence differences in the tra operon are found between the SL1344 plasmid and the ATCC 14028 and LT2 plasmids. Divergence in the tra operon may reflect the occurrence of genetic drift either after laboratory domestication or in the environment. The latter might provide evidence that possession of conjugal transfer functions is a neutral trait in Salmonella populations, a view consistent with the abundance of Salmonella isolates whose virulence plasmids are non-conjugative.  相似文献   

13.
Cell junctions are the gatekeepers of the paracellular route and defend the mucosal barrier. Several enteropathogenic bacteria can invade intestinal epithelial cells by targeting and damaging cell junctions. It is not well understood how Salmonella typhimurium is able to overcome the intestinal barrier and gain access to the circulation, nor is it understood how Lactobacillus prevents the invasion of S. typhimurium. Therefore, we sought to determine whether infection with S. typhimurium SL1344 could regulate the molecular composition of cell junctions and whether Lactobacillus delbrueckii ssp. lactis R4 could affect this modification. Our data demonstrated that infection of Caco-2 cells with S. typhimurium over 2 h resulted in a redistribution of claudin-1, ZO-1, occluding, and E-cadherin. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium could decrease the expression of cell junction proteins. However, L. delbrueckii ssp. lactis R4 ameliorated this destruction and induced increased expression of ZO-1, occludin, and E-cadherin relative to the levels in the control group. The results of these experiments implied that S. typhimurium may facilitate its uptake and distribution within the host by regulating the molecular composition of cell junctions. Furthermore, Lactobacillus may prevent the adhesion and invasion of pathogenic bacteria by maintaining cell junctions and the mucosal barrier.  相似文献   

14.
Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity.  相似文献   

15.
Salmonella species proliferate within membrane-bound vacuoles of eukaryotic cells. Recent work has shown that macrophages are the main cell type supporting bacterial growth in vivo. In contrast, tissue culture models have traditionally described epithelial cells as the most permissive cells for bacterial growth. Unfortunately, no mechanism used by Salmonella to initiate growth within a vacuole has been characterised. Recently, it has been shown that Salmonella is capable of attenuating intracellular proliferation. This finding suggests that both the host and the pathogen contribute to a fine adjustment of the intracellular growth rate.  相似文献   

16.
This study was conducted to evaluate the probiotic properties of Pediococcus pentosaceus OZF isolated from human breast milk. The results obtained so far suggest that the strain is resistant to low pH, bile salt, pepsin and pancreatin, so it could survive while passing through the upper part of the gastrointestinal tract and reveal its potential probiotic action on host organism. The strain was non-pathogenic (γ-hemolytic), produced anti-Listerial bacteriocin, exhibited a strong autoaggregating phenotype (85.71%) and demonstrated 6.26 and 12.99% coaggregation with Salmonella enterica serotype Typhimurium SL 1344 and Escherichia coli LMG 3083 (ETEC), respectively. The degree of adhesion of Ped. pentosaceus OZF to the human Caco-2 cell line was investigated and when compared to the adhesion of pathogenic strains tested, it was shown to inhibit the growth of human enterotoxigenic E. coli LMG 3083 (ETEC) and of Salm. Typhimurium SL 1344. Ped. pentosaceus OZF seems to adhere to human intestinal cells via mechanisms that involve different combinations of carbohydrate and lipid factors on the bacteria and eukaryotic cell surface. The percentage of adhesion to n-hexadecane was 34% showing that the surface was rather hydrophilic. Higher affinity displayed by Ped. pentosaceus OZF for chloroform demonstrates the basic property of a cell, which may be due to the presence of carboxylic groups on the cell surface.  相似文献   

17.
Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions.  相似文献   

18.
Salmonella enterica serovar Typhimurium (S. typhimurium) induces actin assembly both during invasion of host cells and during the course of intracellular bacterial replication. In this study, we investigated the involvement in these processes of host cell signalling pathways that are frequently utilized by bacterial pathogens to manipulate the eukaryotic actin cytoskeleton. We confirmed that Cdc42, Rac, and Arp3 are involved in S. typhimurium invasion of HeLa cells, and found that N-WASP and Scar/WAVE also play a role in this process. However, we found no evidence for the involvement of these proteins in actin assembly during intracellular replication. Cortactin was recruited by Salmonella during both invasion and intracellular replication. However, RNA interference directed against cortactin did not inhibit either invasion or intracellular actin assembly, although it resulted in increased cell spreading and a greater number of lamellipodia. We also found no role for either the GTPase dynamin or the formin family member mDia1 in actin assembly by intracellular bacteria. Collectively, these data provide evidence that signalling pathways leading to Arp2/3-dependent actin nucleation play an important role in S. typhimurium invasion, but are not involved in intracellular Salmonella-induced actin assembly, and suggest that actin assembly by intracellular S. typhimurium may proceed by a novel mechanism.  相似文献   

19.
S Y Qi  A Moir    C D O'Connor 《Journal of bacteriology》1996,178(16):5032-5038
Forty-nine cell envelope proteins of Salmonella typhimurium SL1344 have been identified by microsequencing and assigned to a two-dimensional reference map. Ten of the sequenced proteins appear to be novel. Several others closely match currently hypothetical proteins or proteins found in other bacteria but not previously reported in salmonellae.  相似文献   

20.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号