首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

2.
After immense amounts of research, the root cause for the significantly higher rates of anterior cruciate ligament (ACL) failure incidents in females as compared to males still remains unknown and the existing sex-based disparity has not diminished. To date, the possibility that the female ACL is mechanically weaker than the male ACL has not been directly investigated. Although it has been established in the literature that the female ACL is smaller in size, the differences in the structural and material properties of the ACL between sexes have not been studied. The aim of this cadaveric study was to determine if any sex-based differences in the tensile properties of the human ACL exist when considering age as well as ACL and body anthropometric measurements as covariates. Ten male and 10 female unpaired cadaveric knees (mean age 36.75 years) were used for this study. The geometry of the ACL (including length, cross-sectional area, and volume) was analyzed using a 3-D scanning system. The femur-ACL tibia complex was tested to failure along the longitudinal axis of the ligament in a tensile testing machine. The structural properties of the ACL as well as its mechanical properties were determined. Analysis of covariance was performed to assess the effect of sex on tensile properties. The female ACL was found to have a lower mechanical properties (8.3% lower strain at failure; 14.3% lower stress at failure, 9.43% lower strain energy density at failure, and most importantly, 22.49% lower modulus of elasticity) when considering age, ACL, and body anthropometric measurements as covariates.  相似文献   

3.
Despite recent attention in the literature, anterior cruciate ligament (ACL) injury mechanisms are controversial and incidence rates remain high. One explanation is limited data on in vivo ACL strain during high-risk, dynamic movements. The objective of this study was to quantify ACL strain during jump landing. Marker-based motion analysis techniques were integrated with fluoroscopic and magnetic resonance (MR) imaging techniques to measure dynamic ACL strain non-invasively. First, eight subjects' knees were imaged using MR. From these images, the cortical bone and ACL attachment sites of the tibia and femur were outlined to create 3D models. Subjects underwent motion analysis while jump landing using reflective markers placed directly on the skin around the knee. Next, biplanar fluoroscopic images were taken with the markers in place so that the relative positions of each marker to the underlying bone could be quantified. Numerical optimization allowed jumping kinematics to be superimposed on the knee model, thus reproducing the dynamic in vivo joint motion. ACL length, knee flexion, and ground reaction force were measured. During jump landing, average ACL strain peaked 55±14 ms (mean and 95% confidence interval) prior to ground impact, when knee flexion angles were lowest. The peak ACL strain, measured relative to its length during MR imaging, was 12±7%. The observed trends were consistent with previously described neuromuscular patterns. Unrestricted by field of view or low sampling rate, this novel approach provides a means to measure kinematic patterns that elevate ACL strains and that provide new insights into ACL injury mechanisms.  相似文献   

4.
Mechanical properties of collagen fascicles from the rabbit patellar tendon   总被引:1,自引:0,他引:1  
Tensile and viscoelastic properties of collagen fascicles of approximately 300 microns in diameter, which were obtained from rabbit patellar tendons, were studied using a newly designed micro-tensile tester. Their cross-sectional areas were determined with a video dimension analyzer combined with a CCD camera and a low magnification microscope. There were no statistically significant differences in tensile properties among the fascicles obtained from six medial-to-lateral locations of the patellar tendon. Tangent modulus, tensile strength, and strain at failure of the fascicles determined at about 1.5 percent/s strain rate were 216 +/- 68 MPa, 17.2 +/- 4.1 MPa, and 10.9 +/- 1.6 percent (mean +/- S.D.), respectively. These properties were much different from those of bulk patellar tendons; for example, the tensile strength and strain at failure of these fascicles were 42 percent and 179 percent of those of bulk tendons, respectively. Tangent modulus and tensile strength of collagen fascicles determined at 1 percent/s strain rate were 35 percent larger than those at 0.01 percent/s. The strain at failure was independent of strain rate. Relaxation tests showed that the reduction of stress was approximately 25 percent at 300 seconds. These stress relaxation behavior and strain rate effects of collagen fascicles differed greatly from those of bulk tendons. The differences in tensile and viscoelastic properties between fascicles and bulk tendons may be attributable to ground substances, mechanical interaction between fascicles, and the difference of crimp structure of collagen fibrils.  相似文献   

5.
Clinical, epidemiological, and biomechanical studies suggest the involvement of the cervical facet joint in neck pain. Mechanical studies have suggested the facet capsular ligament to be at risk for subfailure tensile injury during whiplash kinematics of the neck. Ligament mechanical properties can be altered by subfailure injury and such loading can induce cellular damage. However, at present, there is no clear understanding of the physiologic context of subfailure facet capsular ligament injury and mechanical implications for whiplash-related pain. Therefore, this study aimed to define a relationship between mechanical properties at failure and a subfailure condition associated with pain for tension in the rat cervical facet capsular ligament. Tensile failure studies of the C6/C7 rat cervical facet capsular ligament were performed using a customized vertebral distraction device. Force and displacement at failure were measured and stiffness and energy to failure were calculated. Vertebral motions and ligament deformations were tracked and maximum principal strains and their directions were calculated. Mean tensile force at failure (2.96 +/- 0.69 N) was significantly greater (p < 0.005) than force at subfailure (1.17 +/- 0.48 N). Mean ligament stiffness to failure was 0.75 +/- 0.27 N/mm. Maximum principal strain at failure (41.3 +/- 20.0%) was significantly higher (p = 0.003) than the corresponding subfailure value (23.1 +/- 9.3%). This study determined that failure and a subfailure painful condition were significantly different in ligament mechanics and findings provide preliminary insight into the relationship between mechanics and pain physiology for this ligament. Together with existing studies, these findings offer additional considerations for defining mechanical thresholds for painful injuries.  相似文献   

6.
Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.  相似文献   

7.
In the present study the stiffness of the superficial ligaments of 14 human cadaver wrist joints have been determined. In these experiments the tested, fresh-frozen carpal joints are divided into a number of bone-ligament-bone complexes, which are loaded in a tensile testing machine at a rate of 66% of the ligaments' initial length per second to a maximal strain of 15%. From the force-elongation curves and ligament dimensions the tangent moduli for the ligament-bone strips are derived. The results show that, with regard to the tangent modulus, there is not a clear differentiation among ligament strips. Only the dorsal radiotriquetrum ligament (RTD) and the palmar radiocapitate ligament (RCP) appear to consist of a material of a relatively high tangent modulus, about 93 and 83 MPa, respectively. The other seven ligaments tested have similar tangent moduli, ranging from 25 to about 50 MPa.  相似文献   

8.
Connective tissues such as ligament, tendon and skin are composites of strength-bearing collagen fibers embedded in a hydrated matrix. The tensile response and failure properties of rat-tail tendon are thought to represent those of the collagen fiber itself. In this study, the tensile failure properties of rat-tail tendon (tendon collagen) were determined for specimens of various test length. The experimental results indicated that failure strain, based on the test grip-to-grip dimension, and failure strain energy density decreased as specimen length increased. The failure stress, on the other hand, did not change appreciably with specimen length. Thus, tensile failure data cannot simply be normalized by the grip-to-grip length of the test specimen. Experimental data from various laboratories must clearly document the length of the test specimen.  相似文献   

9.
An experimental study examined the tensile stress-strain behavior of cortical bone during rapid load cycles to high strain amplitudes. Machined bovine and human cortical bone samples were subjected to loading cycles at a nominal load/unload rate of +/- 420 MPa/s. Loads were reversed at pre selected strain levels such that load cycles were typically completed in 0.5-0.7 seconds. Axial strain behavior demonstrated considerable nonlinearity in the first load cycle, while transverse strain behavior was essentially linear. For the human bone 29.1 percent (S.D. = 4.7 percent), and for the bovine bone 35.1 percent (S.D. = 10.8 percent) of the maximum nonlinear strain accumulated after load reversal, where nonlinear strain was defined as the difference between total strain and strain corresponding to linear elastic behavior. Average residual axial strain on unloading was 35.4 percent (S.D. = 1.2 percent) for human bone and 35.1 percent (S.D. = 2.9 percent) of maximum nonlinear strain. Corresponding significant volumetric strains and residual volumetric strains were found. The results support the conclusions that the nonlinear stress-strain behavior observed during creep loading also occurs during transient loading at physiological rates. The volume increases suggest that damage accumulation, i.e., new internal surfaces and voids, plays a major role in this behavior. The residual volume increases and associated disruptions in the internal structure of bone provide a potential stimulus for a biological repair response.  相似文献   

10.
Large variable deformations of the ligament cannot be adequately quantified by one-dimensional and/or localized measurements. To obtain accurate measurement of non-uniform strains over the entire surface of anterior cruciate ligament (ACL), we used a photoelastic coating technique and a method that allowed us to photograph an ACL around its longitudinal axis. A cadaver knee was modified to expose its ACL for observation, and the ligament was then coated with a photoelastic material. The knee was locked in a jig that allowed simulation of natural knee motion. The jig containing the knee was then mounted on a stand, which allowed the exposed ACL to be photographed from any angle around its longitudinal axis while set at a chosen degree of knee flexion. The jig itself was rotated on its stand so as to obtain a panoramic view of the ACL at a given knee angle. The obtained images of the photoelastic fringe patterns yielded significant information for understanding how the strain distributions along the fiber bundles change in association with knee motion. From the results we obtained using the photoelastic measuring method, we reached the following conclusions. Reciprocal functioning between the anterior and the posterior bundles from extension to flexion of the knee does occur. Strain distribution is not uniform even along the same bundle. The strain behavior of the ACL under uniaxial tensile test does not duplicate the conditions in which the ACL is damaged during knee motion. The differences in strains on the ACL under active and passive knee motions may not be as large as those reported previously in the literature.  相似文献   

11.
We propose a failure model for ligament which assumes that sequential uncrimping and stretching of collagen fibers is responsible for the mechanical response of ligament. We further assume that the fibers rupture sequentially and in a brittle, strain-limited manner. The model was fit to stress strain curves obtained from medial collateral ligaments of New Zealand White rabbits from two age groups (4 and 7 months). The model indicated that collagen modulus values ranged from 300 to 680 MPa and that fiber failure strains ranged from 6 to 22%. The model provides a convenient means of describing the elastic and failure response of ligament using four structurally based parameters.  相似文献   

12.
Full field strain measurements of biological tissue during loading are often limited to the quantification of fiduciary marker displacements on the tissue surface. These marker measurements can lack the necessary spatial resolution to characterize non-uniform deformation and may not represent the deformation of the load-bearing collagen microstructure. To overcome these potential limitations, a method was developed to track the deformation of the collagen fiber microstructure in ligament tissue. Using quantitative polarized light imaging, fiber alignment maps incorporating both direction and alignment strength at each pixel were generated during facet capsular ligament loading. A grid of virtual markers was superimposed over the tissue in the alignment maps, and the maximization of a vector correlation calculation between fiber alignment maps was used to track marker displacement. Tracking error was quantified through comparisons to the displacements of excised ligament tissue (n=3); separate studies applied uniaxial tension to isolated facet capsular ligament tissue (n=4) to evaluate tracking capabilities during large tissue deformations. The average difference between virtual marker and tissue displacements was 0.07±0.06 pixels. This error in marker location produced principal strain measurements of 1.2±1.6% when markers were spaced 4 pixels apart. During tensile tissue loading, substantial inhomogeneity was detected in the strain field using vector correlation tracking, and the location of maximum strain differed from that produced by standard tracking techniques using coarser meshes. These findings provide a method to directly measure fiber network strains using quantitative fiber alignment data, enabling a better understanding of structure–function relationships in tissues at different length scales.  相似文献   

13.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

14.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

15.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

16.
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes in hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150% to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70%. Interestingly, FEA results indicated that primary cilium length was not directly related to ciliary membrane strain. Rather, it appears that cilium orientation may be more important than cilium length in determining sensitivity of hASC to tensile strain. This is the first study to model the effects of tensile strain on the primary cilium and provides newfound insight into the potential role of the primary cilium as a mechanosensor, particularly in tensile strain and potentially a multitude of other mechanical stimuli beyond fluid shear.  相似文献   

17.
An improved calcium alginate gel formulation was developed and tested as a carrier for entomopathogenic nematodes against Spodoptera littoralis and Helicoverpa armigera larvae. Mortality of 100% was caused in 4th instar larvae of the two insects by feeding them on 1000 infective juveniles (IJ) g -1 of Steinernema carpocapsae (ALL strain) in the gel for 24 h. Exposing 2nd to 5th instars of H. armigera and 3rd to 6th of S. littoralis to 500 IJ g -1 of S. carpocapsae (ALL strain) resulted in 70-100% larval mortality. Mature larvae were less susceptible to the nematodes. Mortality of larvae exposed to 500 IJg -1 of S. carpocapsae (ALL strain) ranged from about 45-55% at 4 h to 90-95% at 48 h. Fourth instar larvae fed for 24 h with 250 IJ g -1 of nematode strains in gel showed in S. littoralis ranges of susceptibility in the following descending order: S. feltiae (IS -7 strain) = S. carpocapsae (DT strain) = S. feltiae (IS-6 strain) > S. carpocapsae (Mexican strain) = S. carpocapsae (ALL strain) = Heterorhabditis bacteriophora (HP-88 strain) = H sp. (IS-5 strain) > S. riobravae (Texas strain); in H. armigera the rating was: S. feltiae (IS-7 strain) = H. bacteriophora (HP88 strain) > S. carpocapsae (ALL strain) = S. feltiae (IS-6 strain ) = Heterorhabditis sp. (IS5 strain) > S. carpocapsae (Mexican strain) > S. riobravae (Texas strain) . The number of nematodes per larval cadaver increased with mortality rates. In greenhouse tests at 28 &#45 2&#176;C and 90% relative humidity, gel discs containing 500 IJ g -1 of nematodes were pinned to leaves of potted plants of cotton ( Gossypium hirsutum ) (Acala SJ2) and the plants were offered to S. littoralis larvae. Larval mortality of 89 &#45 12.7% was caused by S. feltiae (IS-7 strain) and most of the plant leaves were protected against the larvae by the nematodes. In the control, larval mortality was 3.3 &#45 0.05% and the plants were almost completely defoliated. Possibilities of using the gel-nematode formulation to protect sheltered crops against insect pests are discussed  相似文献   

18.
Our recent anterior drawer studies in human cadaveric knees [Guan and Butler, Adv. Bioengng 17, 5 (1990); Guan et al., Trans. orthop. Res. Soc. 16, 589 (1991)] have suggested that anterior bundles of the anterior cruciate ligament (ACL) develop higher load-related material properties than posterior bundles. This was confirmed when we reevaluated the axial failure data for these bundle-bone specimens from an earlier study [Butler et al., J. Biomechanics 19, 425-432 (1986)]. The purpose of this study was to determine, in a larger data set, if anteromedial and anterolateral bundles of the anterior cruciate ligament exhibit significantly larger load-related material properties than the posterior ligament bundles. Seven ACL-bone units from seven donors (the three tissues from the original study plus four new ones) were subdivided into three subunits, preserving the bone insertions. The subunits were failed in tension at a constant strain rate (100% s-1) and four material properties were compared within and between donors. The anterior bundles developed significantly larger moduli, maximum stresses, and strain energy densities to maximum stress than the posterior subunits. Moduli for the anterior vs posterior subunits averaged 284 MPa vs 155 MPa, maximum stresses averaged 38 MPa vs 15 MPa, and strain energy densities averaged 2.7 N m cc-1 vs 1.1 N m cc-1, respectively. No significant differences were found, however, among strains to maximum stress or between any of the other properties for the two anterior subunits. These results are important to the design of ligament replacements and suggest new experiments designed to distinguish in vivo force levels in these ACL bands, a possible reason for the material differences.  相似文献   

19.
Uniaxial tensile tests are commonly used to characterize the structural and material properties of tendons and ligaments. During these tests, the stress and strain distributions applied to the specimen are assumed to be uniform. However, few studies have investigated the strain distributions throughout the tissue. The purpose of this study was to use imaging techniques to measure the strains around the circumference of 11 mm wide Achilles tendon grafts during a uniaxial tensile test. Pairs of radiopaque beads with a diameter of 2mm were affixed around the mid-substance of the tendon in four different locations. The motion of the beads was recorded using a cine fluoroscope. This system was shown to measure the displacement of the beads with an accuracy of 0.02 mm. During the uniaxial tensile test, large variations in local tissue strains were observed. At 10 MPa of applied stress, the local tissue strain varied from an average of 2.5-8.7%, an increase in strain of more than three times. As a result of these large variations, the modulus calculated from the stress-strain data varied from an average of 217 to 897 MPa, an increase of approximately 4 times. Furthermore, these data suggest that underestimates of the elastic modulus may result if a uniform strain distribution is assumed. These results indicate that during uniaxial tensile tests, the assumption of uniform stress and strain distributions should be carefully considered and small, uniform specimens should be used when measuring the material properties of soft tissues.  相似文献   

20.
Control of movement in the avian shoulder joint is fundamental to understanding the avian wingstroke. The acrocoracohumeral ligament (AHL) is thought to play a key role in stabilizing the glenoid and balancing the pectoralis in gliding flight. If the AHL has to be taut to balance the pectoralis, then it must constrain glenohumeral motion during flapping flight as well. However, birds vary wing kinematics depending on flight speed and behavior. How can a passive ligament accommodate such varying joint movements? Herein, mechanical testing and 3-D modeling are used to link the mechanical properties and morphology of the AHL to its functional role during flapping flight. The bone-ligament-bone complex of the pigeon (Columba livia) fails at a tensile loading of 141 ± 18 N (± s .D., n = 10) or 39 times body weight, which corresponds to a failure stress of 51 MPa, well above expected loads during flight. Simulated AHL length changes, comparisons to glenohumeral kinematics from the literature, and manipulations of partially dissected pigeon specimens all support the hypothesis that the AHL remains taut through downstroke and most of upstroke while becoming slack during the downstroke/upstroke transition. The digital AHL model provides a mechanism for explaining how the AHL can stabilize the shoulder joint under a broad array of humeral paths by constraining the coordination of glenohumeral degrees of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号