首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the successive interphases of cleaving mouse embryos the nuclear periphery diminishes its reactivity to anti-lamin A and C antibodies. This developmentally regulated characteristic can be modified by exposure of the blastomere nuclei to metaphase II (M II) oocyte cytoplasm followed by activation. In the current study we define the cytoplasmic conditions necessary for this modification of 8-cell and 16-cell stage nuclei in hybrids obtained by fusion with metaphase II arrested oocytes, oocytes at various time points after parthenogenetic activation, naturally fertilized eggs (zygotes) and interphase 2-cell embryo blastomeres. The intensity of fluorescence obtained with anti-lamins A/C in the blastomere nuclei increases as a result of fusion with freshly activated oocytes or early zygotes (first 3.0-5.5 h in the case of parthenogenetic activation), and not when eggs or 2-cell blastomeres advanced in interphase are used as partners for fusion. This transformation of the A/C lamin pattern is correlated with the ability to promote pronucleus-like growth of blastomere nuclei in hybrids. Blastomere nuclei introduced into M II-arrested oocytes undergo premature chromatin condensation and dissolution of the nuclear lamina. The results are discussed with regard to certain particularities of the first embryonic interphase of the mouse and the potential involvement of nuclear lamins in pronuclear growth.  相似文献   

2.
The nuclear lamins, proteins that reside on the inner face of the nuclear envelope, are thought to provide attachment sites for anchoring the chromatin to the nuclear envelope, thus facilitating the overall organization of the nucleus. The composition of the nuclear lamin proteins changes during differentiation and development in a variety of mammalian and nonmammalian tissues. Bovine and porcine oocytes and early embryos were prepared for immunocytochemical detection of nuclear lamins using three different antibodies (recognizing lamin B, lamins A/B/C, or lamins A/C). In both species, germinal vesicle nuclei and early cleavage stage nuclei react positively with the antibodies. However, on nuclei of bovine embryos, the A/C epitope was not detectable at the 16-cell stage, compact morula, spherical blastocyst, or the chorionic cell nuclei of a Day 35 conceptus, but was detectable on both amniotic and embryonic ectodermal cell nuclei of a Day 35 conceptus. All three antibodies reacted with nuclei from two bovine tissue culture cell lines (bovine embryonic cells and Madin-Darby bovine kidney cells) and one porcine kidney cell line. Nuclei in porcine embryos followed a similar pattern, except the loss of the A/C epitope occurred at the 8-cell stage and the epitope was absent from compact morula and spherical blastocyst stage nuclei. All interphase nuclei in both species reacted with both anti-lamin A/B/C and anti-lamin B antibodies, whereas metaphase chromosomes did not react with any of the lamin antibodies tested. The change in recognizing the lamin epitope occurred one cell cycle after the expected transition from maternal control to zygotic control of development. Nuclear transplantation showed that 16-cell stage porcine nuclei, which are lamin A/C negative, acquired the A/C epitope after transfer to an enucleated metaphase II oocyte. These results suggest that the A/C epitope is developmentally regulated.  相似文献   

3.
Nuclear transplantation in early pig embryos   总被引:38,自引:0,他引:38  
Nuclear transfer was evaluated in early porcine embryos. Pronuclear stage embryos were centrifuged, treated with cytoskeletal inhibitors, and subsequently enucleated. Pronuclei containing karyoplasts were placed in the perivitelline space of the enucleated zygote and fused to the enucleated zygote with electrofusion. The resulting pronuclear exchange embryos were either monitored for cleavage in vitro (9/13 cleaved and contained 2 nuclei after 24 h, 69%) or for in vivo development. In vivo development after 3 days resulted in 14/15 (93%) of the embryos transferred cleaving to the greater than or equal to 4-cell stage and after 7 days 6/16 (38%) reaching the expanded blastocyst stage. A total of 56 pronuclear exchange embryos were allowed to go to term, and 7 piglets were born. A similar manipulation procedure was used to transfer 2-, 4- or 8-cell nuclei to enucleated, activated meiotic metaphase II oocytes. Enucleation was effective in 74% (36/49) of the contemporary oocytes. Activation was successful in 81% (37/46) of nonmanipulated but pulsed oocytes versus 13% (4/31) of control oocytes (p less than 0.01). After 6 days in vivo, 9% (1/11) of the 2-cell nuclei, 8% (7/83) of the 4-cell nuclei, and 19% (11/57) of the 8-cell nuclei transferred to enucleated, activated meiotic metaphase II oocytes resulted in development to the compact morula or blastocyst stage (p less than 0.01). A total of 88 nuclear transfer embryos were transferred to recipient gilts for continued development. A single piglet was born after the transfer of a 4-cell nucleus to an enucleated, activated metaphase II oocyte and subsequent in vivo development.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The appearance and stabilization of a core protein epitope of the snRNP is developmentally regulated during pig embryogenesis. The epitope recognized by the monoclonal antibody Y12 is present in the germinal vesicle of mature oocytes and interphase nuclei of late 4-cell stage (24 to 30 hours post cleavage to the 4-cell stage) to blastocyst stage embryos. There was no antibody localization within pronuclei, or nuclei of 2-cell or early 4-cell stage embryos. Zygotes or 2-cell stage embryos cultured in the presence of alpha-amanitin to the late 4-cell stage showed no immunoreactivity, whereas control embryos had immunoreactivity. Thus antibody localization was correlated with RNA synthesis and RNA processing that begins by 24 hours post cleavage to the 4-cell stage. A final experiment showed no detectable immunoreactivity in 16-cell stage nuclei that had been transferred to enucleated activated meiotic metaphase II oocytes. Since immunoreactivity is associated with active RNA synthesis and RNA processing, it suggests that the 16-cell stage nucleus, which is RNA synthetically active, does not process RNA after nuclear transfer to an enucleated activated meiotic metaphase II oocyte.  相似文献   

5.
Metaphase II and activated mouse oocytes were fused with 8-cell blastomeres, and morphological changes in the transferred nuclei were followed using light and electron microscopy. In metaphase II oocytes, blastomere nuclei underwent premature chromosome condensation (PCC) typical for S-phase nuclei: chromatin pulverization. Then an abortive spindle was formed without evident microtubule organizing centers. Blastomere chromosomes condensed to a lesser degree than meiotic chromosomes and lacked mature functional, trilaminar kinetochores. After parthenogenetic activation of these oocytes, blastomere chromosomes followed, in synchrony with oocyte chromatin, a similar route of changes (anaphase, telophase) and then reformed interphase nuclei of the pronuclear type. Remodeling of 8-cell nucleus thus occurred, but the integrity of the chromatin set was frequently disturbed by formation of micronuclei. If blastomere fusion with oocytes was done close to activation (either before or after parthenogenetic stimulation), the chances of remodeling of the nuclei decreased, because PCC was not regularly induced in all oocytes. In hybrids produced 60 min or later after oocyte activation, blastomere nuclei were maintained in interphase without any structural modifications. Multiple experiments in the mouse have shown that the nuclei from 8-cell stage transferred to enucleated oocytes and egg cells are not capable of substituting for pronuclear functions. Possible reasons for impaired functional reprogramming of 8-cell nucleus in the mouse are discussed in light of our present findings on the morphology of nuclei transferred before and after oocyte activation.  相似文献   

6.
The development of nuclear-transfer oocytes and zygotes was tested in the rabbit. Metaphase II oocytes and zygotes in the early pronuclear stage were treated with a cytoskeletal inhibitor (cytochalasin D), enucleated, and subsequently fused either with single blastomeres from eight- and 16-cell stages (oocytes and zygotes) or with pronuclei-containing karyoplasts (zygotes only). Also, nonenucleated zygotes were fused with 1/8 blastomeres. Fusion was performed by means of an electric field. Development of reconstituted embryos was monitored mainly in vitro, but a certain number of embryos developed from oocytes and zygotes receiving nuclei from eight-cell stages were also transferred into pseudopregnant does. Development of nuclear-transfer oocytes was distinctly better than that of nuclear-transfer zygotes, since 16.9% and 9.5% oocytes vs. 8.1% and 3.7% zygotes carrying eight- and 16-cell nuclei, respectively, developed to the blastocyst stage. Two advanced but already dead fetuses were found after transfer of 27 four-cell embryos obtained after fusion of oocytes with 1/8 blastomeres. No implantations were observed after transfer of 25 four-cell embryos developed from enucleated zygotes receiving eight-cell nuclei. These findings indicate that, in the rabbit, some nuclei from 16-cell embryos are still capable of promoting at least preimplantation development. Comparison between the developmental abilities of oocyte- and zygote-derived nuclear-transfer embryos also suggests that the cytoplasmic environment of recipient cell is more crucial for the development of reconstituted embryos than the stage of introduced nuclei (at least up to the 16-cell stage). The majority of pronuclear exchange embryos (69.9%) and 40% of nonenucleated zygotes receiving eight-cell nuclei were able to develop to the blastocyst stage. This latter observation indicates, similarly as with mouse, a supporting role of residual pronuclei for participation of an eight-cell nucleus in the development of reconstituted zygotes.  相似文献   

7.
This study was conducted to investigate the presence of lamin A/C in porcine nuclear transfer embryos and to determine whether lamin A/C can serve as a potential marker for nuclear reprogramming. First, lamin A/C was studied in oocytes and embryos produced by fertilization or parthenogenetic oocyte activation. We found that lamin A/C was present in the nuclear lamina of oocytes at the germinal vesicle stage while it was absent in mature oocytes. Lamin A/C was detected throughout preimplantation development in both in vivo-derived and parthenogenetic embryos. Incubation of the activated oocytes in the presence of alpha-amanitin (an inhibitor of RNA polymerase II), or cycloheximide (a protein synthesis inhibitor) did not perturb lamin A/C assembly, indicating that the assembly resulted from solubilized lamins dispersed in the cytoplasm. In nuclear transfer embryos, the lamin A/C signal that had previously been identified in fibroblast nuclei disappeared soon after fusion. It became detectable again after the formation of the pronucleus-like structure, and all nuclear transfer embryos displayed lamin A/C staining during early development. Olfactory bulb progenitor cells lacked lamin A/C; however, when such cells were fused with enucleated oocytes, the newly formed nuclear envelopes stained positive for lamin A/C. These findings suggest that recipient oocytes remodel the donor nuclei using type A lamins dispersed in the ooplasm. The results also indicate that lamin A/C is present in the nuclear envelope of pig oocytes and early embryos and unlike in some other species, its presence after nuclear transfer is not an indicator of erroneous reprogramming.  相似文献   

8.
We have investigated the possibility that mitotic nuclei originating from preimplantation stage embryos and placed in the oocyte cytoplasm can undergo remodelling that allows them to undergo meiosis in the mouse. To address this question, we have used enucleated germinal vesicle (GV) ooplasts as recipients and blastomeres from the 2-, 4- or 8-cell stage as nuclear donors. We employed two methods to obtain ooplasts from GV oocytes: cutting and enucleation. Although efficiency of the reconstruction process was higher after enucleation than after cutting (90% and 70% respectively), the developmental potential of the oocytes was independent of how they had been produced. Nuclei from the 2-, 4-, or 8-cell stage embryos supported maturation in about 35%, 55% and 60% of cases, respectively. The time between nuclear envelope breakdown and the first meiotic division was shortened by up to 5 h in reconstructed oocytes, a period equivalent to the mitotic division of control blastomeres. About one-third of oocytes reconstituted with blastomere nuclei divided symmetrically instead of extruding a polar body; however, in the majority of them metaphase plates were found, suggesting that reconstructed oocytes (cybrids) underwent a meiotic rather than mitotic division. The highest percentage of asymmetric divisions accompanied by metaphase plates was found in cybrids with 8-cell-stage blastomere nuclei, suggesting that the nuclei from this stage appear to conform best to the cytoplasmic environment of GV ooplasts. Our results indicate that the oocyte cytoplasm is capable of remodelling blastomere nuclei, allowing them to follow the path of the meiotic cell cycle.  相似文献   

9.
10.
Nuclear and pronuclear transfer procedures were used to assess the functional competence of the nucleus and cytoplasm of mouse germinal vesicle-stage oocytes denuded of granulosa cells and matured in vitro or in vivo before artificial activation using a sequential treatment of A23187 + cycloheximide. Following activation, in vitro-matured oocytes were "fertilized" by inserting a male pronucleus (PN), cultured to the 2-cell stage, and then transferred to the oviducts of foster mothers. No live births were noted, whereas a 17% live birth rate was observed when in vivo-matured oocytes were used. The developmental competency of other zygotes was similarly assessed following the exchange of haploid PN of matured and activated eggs with the female PN of fertilized zygotes. When PN of oocytes subjected to maturation and activation in vitro were transferred, only 1 of 79 reconstructed zygotes developed to term. In contrast, the live birth rate was 21% (11 of 53) for zygotes reconstructed with PN from in vivo-matured oocytes. Moreover, a live birth rate of 23% (8 of 35) was observed for reconstructed zygotes with female PN from "hybrid" oocytes created by transferring the metaphase II nuclei of in vitro-matured oocytes into enucleated, in vivo-matured oocytes before activation. Such results suggest that the nucleus of an in vitro-matured oocyte can support embryonic development, but only when it is activated in the proper ooplasmic milieu. The cellular factors creating this ooplasmic milieu appear to develop normally in vivo during follicle maturation to metaphase II, but they fail to do so when the oocytes are denuded of granulosa cells and cultured in vitro before the final stages of maturation. In parallel studies, male and female PN of in vivo-fertilized zygotes were inserted into oocytes that were activated and enucleated following either in vitro or in vivo maturation. Live birth rates were comparable at 19% (5 of 27) and 18% (9 of 49), respectively, suggesting that, regardless of the environment of the final stages of oocyte maturation, the resultant ooplasm is competent to support all aspects of embryonic development once activation and PN formation has been completed. Such findings only point further toward the importance of the condition of the ooplasmic milieu at the time of chemical activation. Whether a similar situation exists when eggs are activated following sperm penetration remains to be determined.  相似文献   

11.
The present study examined nuclear remodeling in rabbit nuclear transfer (NT) embryos formed from metaphase II (MII) oocytes aged in vivo until 19 hr postcoitum (hpc), enucleated, and fused at 22–26 hpc with 32-cell morula blastomeres by means of electric fields, which also induced recipient oocyte activation. Post-activation events observed during the first hour following the fusion/activation pulse were studied in terms of chromatin, lamins, and micro-tubules, and revealed that transferred nuclei underwent premature chromosomes condensation (PCC) in only one-third of NT embryos and remained in interphase in others. Recipient oocytes were mostly not activated by manipulations performed before the fusion/activation pulse. The persistance of transferred nuclei in interphase resulted from the rapid progression of recipient oocytes to interphase after activation, suggesting that the cytoplasmic state of MII oocytes aged in vivo was poised for the approach to interphase. Studying micro-tubular organization in MII oocytes before nuclear transfer manipulations, we found that 19 hpc MII oocytes aged in vivo differed from 14 hpc MII oocytes (freshly ovulated) and from 19-hpc MII oocytes aged in vitro (collected at 14 hpc and cultured for 5 hr), notably by the presence of microtubule asters and tubulin foci or only tubulin foci dispersed throughout the cytoplasm. When PCC was avoided, remodeling of the transferred nucleus was well advanced 1 hr after nuclear transfer, and NT embryos developed better to the blastocyst stage. Mol. Reprod. Dev. 46:325–336, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The nuclear matrix is thought to be responsible for DNA organization, DNA replication, RNA synthesis, and RNA processing. We have looked for the presence of nuclear matrix antigens during early mouse embryogenesis. Antibodies to peripheral and interior antigens (P1, Pl1, Pl2, and lamin B) were used to immunolocalize nuclear matrix antigens in germinal vesicle oocytes, metaphase II oocytes, zygotes, two-cell-stage embryos, and eight-cell stage embryos. All antibodies reacted with the nuclei of germinal vesicle oocytes, and two- and eight-cell-stage embryos; however, only P1 and lamin B were present at the pronuclear stage. In eggs collected at the pronuclear stage and cultured to the late two-cell stage in the presence of alpha-amanitin, the matrix morphology was altered for Pl1 and Pl2. alpha-Amanitin had no affect on the distribution of P1 or lamin B antigens. If alpha-amanitin was added 2 hr after cleavage to the two-cell stage, the normal staining pattern of Pl2 was retained. These results suggest that the presence of specific components of an internal matrix is correlated with normal genomic activity.  相似文献   

13.
Uhm SJ  Chung HM  Kim C  Shim H  Kim NH  Lee HT  Chung KS 《Theriogenology》2000,54(4):559-570
In the pig little information is available on cytoplasmic events during the reprogramming of oocytes reconstructed with somatic nuclei. The present study was conducted to determine the developmental potential of porcine cumulus cells (CC) and fetal fibroblasts (FF) after they were transferred into enucleated oocytes. Non-quiescent FF were fused to the enucleated oocytes using electrical pulse, whereas CC were directly injected into the oocytes. Transferred nuclei from both CC and FF underwent premature chromosome condensation (PCC), nuclear swelling and pronucleus formation. The remodeled oocytes developed to the mitotic and 2-cell stage at 18 to 24 h after nuclear transfer. The pattern of nuclear remodeling was similar regardless of the sources of karyoplasts or nuclear transfer methods. However, using FF, 24% of nuclear transferred embryos developed to the morula or blastocyst stage, whereas only 8% of those using CC developed to the morula or blastocyst stage. These results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of nuclear transferred embryos to the blastocyst stage.  相似文献   

14.
15.
The transfer of nuclei from cleavage stage embryos to enucleated activated meiotic metaphase II oocytes results in a reprogramming of the transferred nucleus such that it behaves as a zygotic nucleus. One estimator of nuclear reprogramming is nuclear swelling after nuclear transfer. The diameter of nuclei after nuclear transfer was not found to be dependent upon the amount of cytoplasm transferred with the donor cell or the amount of cytoplasm in the recipient cell. Nuclei from 4-, 8-, and 16-cell stage embryos swelled to a similar diameter after nuclear transfer (26.9, 27.3, and 27.2 microns, respectively) and this was significantly different from the diameter of contemporary donor embryos (18.3, 14.3, and 13.0 microns, respectively). This is a swelling of 47, 91, and 109%, respectively. Since the degree of nuclear swelling does not appear to be related to cytoplasmic volume it is concluded that the components mediating nuclear swelling are not in a limiting supply.  相似文献   

16.
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.  相似文献   

17.
Summary This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and the bovine oocytes as recipient cytoplasts to investigate the reprogramming of camel somatic cell nuclei in bovine oocyte cytoplasm and the developmental potential of the reconstructed embryos. Serum-starved skin fibroblast cells, obtained from adult camel, were electrically fused into enucleated bovine metaphase II (MII) oocytes that were matured in vitro. The fused eggs were activated by Inomycin with 2 mM/ml 6-dimethylaminopurine. The activated reconstructed embryos were cocultured with bovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum for 168 h. Results showed that 53% of the injected oocytes were successfully fused, 34% of the fused eggs underwent the first egg cleavage, and 100% of them developed to four- or 16-cell embryo stages. The first completed cleavage of xenonuclear transfer camel embryos occurred between 22 and 48 h following activation. This study demonstrated that the reconstructed embryos underwent the first embryonic division and that the reprogramming of camel fibroblast nuclei can be initiated in enucleated bovine MII oocytes.  相似文献   

18.
The objective of this research was to study efficiency of embryo development following transfer of blastomeres into the perivitelline space of oocytes. Single blastomeres from 8-, 16-, and 32-cell embryos were obtained following mucin coat and zona pellucida removal by combined treatments with pronase and acidic phosphate-buffered saline (PBS, pH = 2.5). Blastomeres were separated by pipetting with a fire-polished micropipette following incubation in Ca+(+)-free PBS for 15 min at 39 degrees C. This procedure resulted in over 97% blastomere separation. For ease of blastomere insertion, oocytes were placed in droplets of 0.5 M sucrose in PBS (SPBS) during micromanipulation. To functionally enucleate oocytes some were stained with Hoechst 33342 DNA stain and irradiated. A single 8- or 16-cell blastomere was aspirated into an injection pipette (35 microns or 25 microns at the tip, respectively) and inserted into the perivitelline space of an irradiated or non-irradiated oocyte, but not fused with the oocyte. This micromanipulation procedure did not affect development of individual blastomeres into blastocysts or trophectoderm vesicles when compared with cultured control single blastomeres (P greater than .05). When the inserted blastomere was induced to fuse with an intact non-irradiated oocyte under an electric field, 56-57% were fused and 39-45% of the fused and activated oocytes developed to morulae or blastocysts. When an inserted blastomere (from 8-32-cell embryos) was induced to fuse with a functionally enucleated oocyte treated by Hoechst 33342 staining, followed by washing and UV-light irradiation, 63-66% of them were fused, but only 15-22% developed to the morula or blastocyst stage. This research demonstrated that the use of hypertonic medium treated oocytes greatly improved the ease and success rate of blastomere subzona insertion, but the value of functionally enucleated oocytes as recipient cells for nuclear transfer requires further investigation.  相似文献   

19.
Nuclear reprogramming in nuclear transplant rabbit embryos   总被引:26,自引:0,他引:26  
The first six genetically verified nuclear transplant rabbits have been produced in this study. Individual eight-cell stage embryo blastomeres were transferred and fused with enucleated mature oocytes of which six full-term offspring were produced out of 164 manipulated eggs. The following efficiency rates were determined for the nuclear transplantation procedure: chromosomal removal from oocytes, 92%; fusion rate, 84%; activation rate, 46%; embryo transfer rate, 27%. Additional reasons for the low efficiency rate of nuclear transplant embryos may include limited development due to aging in recipient oocytes and asynchronous transfers of manipulated embryos to recipient females. The successful development to term may have been due to the ability of the mature oocyte to reprogram the eight-cell stage nuclei. The number of cells in blastocysts derived from isolated eight-cell blastomeres (18 +/- .08) was lower than that of nonmanipulated pronuclear (106 +/- 5.1) and nuclear transplant embryos derived from eight-cell stage nuclei (91 +/- 10.2) (p less than 0.001). This evidence along with the significant amount of nuclear swelling in nuclear transplant embryos and a delay in the time of blastocyst formation indicate that nuclear reprogramming had taken place in these embryos. Successful nuclear reprogramming indicates that serial transfers could result in the expanded multiplication of mammalian embryos.  相似文献   

20.
Successful production of cloned animals derived from somatic cells has been achieved in sheep, cattle, goats, mice, pigs, rabbits, etc. But the efficiency of nuclear transfer is very low in all species. The present study was conducted to examine somatic nucleus remodelling and developmental ability in vitro of rabbit embryos by transferring somatic cells into enucleated germinal vesicle (GV), metaphase I (MI) or metaphase II (MII) oocytes. Microtubules were organized around condensed chromosomes after the nucleus had been transferred into any of the three types of cytoplasm. A bipolar spindle was formed in enucleated MII cytoplasm. Most of the nuclei failed to form a normal spindle within GV and MI cytoplasm. Some chromosomes scattered throughout the cytoplasm and some formed a monopolar spindle. Pseudopronucleus formation was observed in all three types of cytoplasm. Reconstructed embryos with MI and MII cytoplasm could develop to blastcysts. Nuclei in GV cytoplasm could develop only to the 4-cell stage. These results suggest that (1) GV material is important for nucleus remodelling after nuclear transfer, and (2) oocyte cytoplasm has the capacity to dedifferentiate somatic cells during oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号