首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyridoxine (vitamin B6) in Rhizobium is synthesized from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine. To define the pathway enzymatically, we established an enzyme reaction system with a crude enzyme solution of R. meliloti IFO14782. The enzyme reaction system required NAD+, NADP+, and ATP as coenzymes, and differed from the E. coli enzyme reaction system comprising PdxA and PdxJ proteins, which requires only NAD+ for formation of pyridoxine 5′-phosphate from 1-deoxy-D-xylulose 5-phosphate and 4-(phosphohydroxy)-L-threonine.  相似文献   

2.
In this article we compare the kinetic behavior toward pyridine nucleotides (NAD+, NADH) of NAD+-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD+ was the varied substrate. However, the NAD+-linked malic enzyme exhibited the weakest affinity for NAD+ and the lowest sensitivity for NADH. It is suggested that NAD+-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.  相似文献   

3.
Three strains ofFusarium supporting aerobic growth onl-threonine as the sole source of energy and carbon and nitrogen, initially metabolised threonine to acetyl-CoA and glycine via induciblel-threonine:NAD+ dehydrogenase plus 2-amino-3-oxobutyrate:CoA ligase activities. Comparative enzyme induction patterns after growth of the three strains on a wide range of carbon sources indicated that the glycine produced by the NAD+ plus CoASH-dependent cleavage of threonine was subsequently utilised as an energy source and biosynthetic precursor via the glycine-serine pathway, pyruvate carboxylase, and ultimately the TCA cycle. Acetyl-CoA, the second initial C2 threonine catabolism product, was subsequently assimilated via a combined TCA plus glyoxylate cycle.  相似文献   

4.
The pyruvate dehydrogenase complex (PDC) was purified from Brassica oleracea var. italica floral buds to a specific activity of approximately 6 μmol of NADH formed/min/ mg of protein. The PDC had cofactor requirements for NAD+, thiamine pyrophosphate, coenzyme A, and a divalent cation (Mg2+, Ca2+, or Mn2+). The enzyme catalyzed the oxidative decarboxylation of pyruvate at a rate threefold faster than 2-oxobutyrate but was inactive toward 2-oxoglutarate. The PDC was competively inhibited by acetyl-CoA against CoA and NADH against NAD+. The enzyme was shown to be more sensitive to regulation by NADH than acetyl-CoA.  相似文献   

5.
A tertiary amine monoxygenase from a Pseudomonas sp. was partially purified (35-fold) and characterized. In the presence of nitrilotriacetate (NTA), O2, NADH, and Mn2+, the enzyme yielded two sets of products: iminodiacetate, glyoxylate, NAD+ and H2O; or H2O2 and NAD+. Which set of products predominated was a function of enzyme concentration, ionic strength of solution, pH, and cation supplied. NTA functioned both as a modifiable substrate and as a stimulator of NADH oxidase activity. A requirement for preincubation with Mn2+ and NTA to eliminate enzyme hysteresis and the similar Km values for NTA and Mn2+ suggested that the substrate and metal were bound as a unit by the enzyme.  相似文献   

6.
The proton magnetic resonance spectra of the dihydronicotinamide ring of αNADH3 and the nicotinamide ring of αNAD+ are reported and the proton absorptions assigned. The absolute assignment of the C4 methylene protons of αNADH is based on the generation of specifically deuterium-labeled (pro-S) B-deuterio-αNADH from enzymatically prepared B-deuterio-βNADH. The C4 proton absorption of αNAD+ is assigned by oxidation of B-deuterio-αNADH by the A specific, yeast alcohol dehydrogenase to yield 4-deuterio-αNAD+.The epimerization of either αNADH or βNADH yields an equilibrium ratio of approximately 9:1 βNADH to αNADH. The rate of epimerization of αNADH to βNADH at 38 °C in 0.05, pH 7.5, phosphate buffer is 3.1 × 10?3 min?1, corresponding to a half-life of 4 hr. Four related dehydrogenases, yeast and horse liver alcohol dehydrogenase and chicken M4 and H4 lactate dehydrogenase, are shown to oxidize αNADH to αNAD+ at rates three to four orders of magnitude slower than for βNADH. By using specifically labeled B-deuterio-αNADH the enzymatic oxidation by yeast alcohol dehydrogenase has been shown to occur with the identical stereospecificity as the oxidation of βNADH. The nonenzymatic epimerization of αNADH to βNADH and the enzymatic oxidation αNADH are discussed as a possible source of αNAD+in vivo.  相似文献   

7.
Sterile cultures of Lemna minor grown in the presence of either nitrate, ammonium or amino acids failed to show significant changes in glutamate dehydrogenase (GDH) levels in response to nitrogen source. Crude and partially purified GDH preparations exhibit NADH and NADPH dependent activities. The ratio of these activities remain ca 12:1 during various treatments. Mixed substrate and product inhibition studies as well as electrophoretic behaviour suggest the existence of a single enzyme which is active in the presence of both coenzymes. GDH activity was found to be localized mainly in mitochondria. Kinetic studies revealed normal Michaelis kinetics with most substrates but showed deviations with NADPH and glutamate. A Hill-coefficient of 1.9 determined with NADPH indicates positive cooperative interactions, whereas a Hill-coefficient of 0.75 found with glutamate may be interpreted in terms of negative cooperative interactions. NADH dependent activity decreases rapidly during gel filtration whereas the NAD+ and NADPH activities remain unchanged. GDH preparations which have been pretreated with EDTA show almost complete loss of NADH and NAD+ activities. NADPH activity again remains unaffected. NAD+ activity is fully restored by adding Ca2+ or Mg2+, whereas the NADH activity can only be recovered by Ca2+ but not at all by Mg2+. Moderate inhibition of GDH reactions observed with various adenylates are fully reversed by adding Ca2+, indicating that the adenylate inhibition is due solely to the chelating properties of these compounds.  相似文献   

8.
Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.  相似文献   

9.
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.  相似文献   

10.
11.
A novel enzyme, myo-inositol-1-phosphate dehydrogenase, which catalyzes the conversion of myo-inositol 1-phosphate to ribulose 5-phosphate has been purified 84-fold from mung bean seedling employing several common techniques. The molecular weight of this purified enzyme has been recorded as 88,500 by Sephadex G-200 column chromatography, and in sodium dodecyl sulfate-polyacrylamide gel electrophoresis one protein band containing three subunits of Mr 32,000 each was discernible. Km values for NAD+ and myo-inositol 1-phosphate have been recorded as 2.8 × 10?4 and 5.0 × 10?4m, respectively. Production of NADH in myo-inositol-1-phosphate dehydrogenase reaction has also been evidenced by measurement of NADH fluorescence. Dehydrogenation and decarboxylation of myo-inositol 1-phosphate are mediated by the same enzyme. In fact, the rate of dehydrogenation corroborates with that of decarboxylation. Stoichiometry of this reaction suggests that for the production of 1 mol of ribulose 5-phosphate 2 mol of NAD+ are reduced.  相似文献   

12.
The NADH and NAD+ dependent reactions catalyzed by glutamate dehydrogenase (GDH) from sterile cultures of Lemna minor are completely inactivated by EDTA. The activities of both reactions can be fully restored by addition of Ca2+ and to a lesser extent Mn2+, Zn2+, Sr2+ or La3+, whereas Mg2+ reactivates only the NAD+ dependent reaction. Activation of the NADH reaction by Ca2+ has been studied by using partially purified, EDTA pretreated, and Mg2+ saturated GDH preparations. Saturation kinetic curves with Ca2+ were always sigmoidal, whereas saturation plots for the 3 substrates of the aminating reaction at various fixed Ca2+ concentrations showed normal Michaelis kinetics. However, a pronounced substrate inhibition at low Ca2+ levels was found, particularly with NH4+ and NADH. Product inhibition studies revealed unchanged enzyme substrate binding characteristics for NADH and 2-oxoglutarate in the Ca2+ free enzyme. A drastic alteration was established for the third substrate NH4+. The kinetic data suggest that Ca2+ governs an equilibrium between a catalytically inactive (Ca2+ free) and an active (Ca2+ saturated) enzyme form. Inactivation by removal of Ca2+ is related to an alteration in the binding characteristics or binding sequence of the substrate NH4+.  相似文献   

13.
The isolation and characterization of a new methanogen from a peat bog, Methanobacterium palustre spec. nov., strain F, is described. Strain F grew on H2/CO2 and formate in complex medium. It also grew autotrophically on H2/CO2. Furthermore, growth on 2-propanol/CO2 was observed. Methane was formed from CO2 by oxidation of 2-propanol to acetone or 2-butanol to 2-butanone, but growth on 2-butanol plus CO2 apparently was too little to be measurable. Similarly, Methanobacterium bryantii M. o. H. and M. o. H. G formed acetone and 2-butanone from 2-propanol and 2-butanol, but no growth was measurable.On the basis of morphological and biochemical features strain F could be excluded from the genus Methanobrevibacter. Due to its cell morphology, lipid composition and polyamine pattern it belonged to the genus Methanobacterium. From known members of this genus strain F could be distinguished either by a different G+C content of the DNA, low DNA-DNA homology with reference strains, lacking serological reactions with anti-S probes and differences in the substrate spectrum.An alcohol dehydrogenase activity, specific for secondary alcohols and its substrate specificity was determined in crude extracts of strain F. NADP+ was the only electron carrier that was utilized. No reaction was found with NAD+, F420, FMN and FAD.Abbreviations NAD+ nicotinamide adenine dinucleotide - NADH2 reduced form of NAD+ - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH2 reduced form of NADP+ - FMN flavin adenine mononucleotide - FAD flavin adenine dinucleotide - ADH alcohol dehydrogenase - F420 8-hydroxy-7,8-didemethyl-5-deazaflavin - SSC standard saline citrate (0.15 M NaCl, 0.015 M trisodium citrate, pH 7.5)  相似文献   

14.

Background  

L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC 1.1.1.103) is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH) have been identified previously, but the human gene has not been identified.  相似文献   

15.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

16.
The xanthine-oxidizing enzyme of rat liver has been purified as an NAD+-dependent dehydrogenase (type D) and as the O2-dependent oxidase (type O). The purified D and O variants are nearly homogenous as judged by polyacrylamide discontinuous gel electrophoresis and are indistinguishable on sodium dodecyl sulfate-urea gels. The absorption spectrum of the type D enzyme is indistinguishable from that of the type O enzyme and closely resembles the spectra of xanthine-oxidizing enzymes from other sources. The types D and O enzymes have essentially the same cofactor composition. Oxidation of xanthine by type D is stimulated by NAD+ with concomitant NADH formation. Type D is able to utilize NADH as well as xanthine as electron donor to various acceptors, in contrast to type O that is unable to oxidize NADH. Arsenite, cyanide and methanol completely abolish xanthine oxidation by the type D enzyme while affecting the activities with NADH to varying extents. In these respects rat liver xanthine dehydrogenase closely resembles chicken liver xanthine dehydrogenase. However, in contrast to the avian enzyme, the purified rat liver enzyme is unstable as a dehydrogenase and is gradually converted to an oxidase. This conversion is accompanied by an increase in the aerobic xanthine → cytochrome c activity. The native type D enzyme in rat liver extracts is precipitable with antibody prepared against purified type O. The Km for xanthine is not significantly different for the two forms.  相似文献   

17.
The typical procedure for determining NAD+-malic enzyme (EC 1.1.1.39) is to calculate the enzyme rate to be ΔA340/Δ time after the endogenous NAD+-malic dehydrogenase (EC 1.1.1.37) catalyzed reaction has reached equilibrium. This ignores the equilibrium shift of oxaloacetic acid and NADH during the course of the NAD+-malic enzyme reaction and causes an error that varies depending on the reagent [malate], [NAD+], pH and final [NADH]. For a ΔA340 of 0.02, the error is about 80% and for a ΔA340 of 0.30, 20%. We develop this argument, give supportive data and present a simple method to circumvent the error.  相似文献   

18.
Summary The new enzyme d-2-hydroxyisocaproate dehydrogenase (NAD+-dependent) was detected in strains of the genus Lactobacillus and related genera. Straight and branched chain aliphatic as well as aromatic 2-ketocarboxylic acids are stereospecifically reduced to the corresponding d-2-hydroxycarboxylic acids according to the following equation:R-CO-COOH + NADH + H+ R-CHOH-COOH + NAD+ The enzyme is called d-hydroxyisocaproate dehydrogenase by us because 2-ketoisocaproate is the substrate with the lowest KM-value. NAD(H) as a cofactor cannot be replaced by NADP(H). Because of its broad substrate specificity we chose the strain Lactobacillus casei ssp. pseudoplantarum (DSM 20 008) for enzyme production and characterization. d-2-hydroxyisocaproate dehydrogenase could be purified 180-fold starting with 500 g of wet cells.The purification procedure involved liquid-liquid extraction with aqueous two-phase systems and ion-exchange chromatography. At this stage the enzyme has a specific activity of 25 U/mg and can be used for technical applications. Further purification up to a homogeneous protein with a specific activity of 110 U/mg can be achieved by chromatography on Amberlite CG 50 at pH 3.5. Properties important for technical application of the d-HicDH were investigated, especially the substrate specificity and the optimum pH- and temperature ranges for activity and stability of the catalist.  相似文献   

19.
20.
In this work, we have postulated a comprehensive and unified chemical mechanism of action for yeast alcohol dehydrogenase (EC 1.1.1.1, constitutive, cytoplasmic), isolated from Saccharomyces cerevisiae. The chemical mechanism of yeast enzyme is based on the integrity of the proton relay system: His-51....NAD+....Thr-48....R.CH2OH(H2>O)....Zn++, stretching from His-51 on the surface of enzyme to the active site zinc atom in the substrate-binding site of enzyme. Further, it is based on extensive studies of steady-state kinetic properties of enzyme which were published recently. In this study, we have reported the pH-dependence of dissociation constants for several competitive dead-end inhibitors of yeast enzyme from their binary complexes with enzyme, or their ternary complexes with enzyme and NAD+ or NADH; inhibitors include: pyrazole, acetamide, sodium azide, 2-fluoroethanol, and 2,2,2-trifluorethanol. The unified mechanism describes the structures of four dissociation forms of apoenzyme, two forms of the binary complex E.NAD+, three forms of the ternary complex E.NAD+.alcohol, two forms of the ternary complex E.NADH.aldehyde and three binary complexes E.NADH. Appropriate pKa values have been ascribed to protonation forms of most of the above mentioned complexes of yeast enzyme with coenzymes and substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号