首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A down-modulation of both the 55-kDa (TNF-R55) and the 75-kDa (TNF-R75) TNF receptors is observed in neutrophils exposed to a variety of stimuli. Proteolytic cleavage of the extracellular region of both receptors (shedding) and, with TNF, internalization of TNF-R55 and shedding of TNF-R75 are the proposed mechanisms. We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase. Neutrophils exposed to TNF release both TNF receptors. A release of TNF receptors comparable to that observed with TNF was induced with TNF-R55-specific reagents (mAbs and a mutant of TNF) but not with the corresponding TNF-R75-specific reagents. A hydroxamic acid compound (KB8301) almost completely inhibited shedding of TNF-R55 and to a lesser degree shedding of TNF-R75. KB8301 also inhibited FMLP-induced shedding to a similar extent. Shedding was also inhibited by 1,10-phenanthroline, but this effect was considered nonspecific as the compound, at variance with KB8301, almost completely inhibited TNF and FMLP-induced PMN activation. Diisopropylfluorophosphate partially inhibited shedding of TNF-R75, suggesting the contribution of a serine proteinase to the release of this receptor. Shedding activity was not affected by matrix metalloproteinases inhibitors nor was it released in the supernatants of FMLP-stimulated neutrophils. These results suggest that TNF induces release of its receptors, that such a release is mediated via TNF-R55, and that a membrane-bound and non-matrix metalloproteinase is involved in the process. The possibility that ADAM-17, which we show to be expressed in neutrophils, might be the involved proteinase is discussed.  相似文献   

2.
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.  相似文献   

3.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

4.
The various biological activities of tumor necrosis factor (TNF) are mediated by two receptors, one of 55 kD (TNF-R55) and one of 75 kD (TNF-R75). Although the phenotypic and molecular responses elicited by TNF in different cell types are fairly well characterized, the signaling pathways leading to them are so far only partly understood. To further unravel these processes, we focused on TNF-R55, which is responsible for mediating most of the known TNF effects. Since several studies have demonstrated the importance of receptor clustering and consequently of close association of the intracellular domains for signaling, we addressed the question of whether clustering of the intracellular domains of TNF-R55 (TNF-R55i) needs to occur in structural association with the inner side of the cell membrane, where many signaling mediators are known to reside. Therefore, we investigated whether induced intracellular clustering of only TNF-R55i would be sufficient to initiate and generate a full TNF response, without the need for a full-length receptor molecule or a transmembrane region. Our results provide clear evidence that inducible forced trimerization of either TNF-R55i or only the death domain elicits an efficient TNF response, comprising activation of the nuclear factor κB, induction of interleukin-6, and cell killing.  相似文献   

5.
To localize the protease(s) involved in shedding of tumor necrosis factor receptors (TNF-R) from activated neutrophils (PMN) (Porteu, F., and C. Nathan (1990) J. Exp. Med. 172, 599-607), we tested subcellular fractions from PMN for their ability to cause loss of TNF-R from intact cells. Exposure of PMN to sonicated azurophil granules at 37 degrees C resulted in inhibition of 125I-TNF binding; 50% inhibition ensued when PMN were treated for approximately 1 min with azurophil granules equivalent to 2-3 PMN per indicator cell. The TNF-R-degrading activity in azurophil granules were identified as elastase by its sensitivity to diisopropyl fluorophosphate (DFP), alpha 1-antitrypsin and N-methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone (MSAAPV-CK), and by the ability of purified elastase to reproduce the effect of azurophil granules. Elastase preferentially acted on the 75-kDa TNF-R, reducing by 85-96% the binding of 125I-TNF to mononuclear cells expressing predominantly this receptor, while having no effect on endothelial cells expressing almost exclusively the 55-kDa TNF-R. Elastase-treated PMN released a 32-kDa soluble fragment of p75 TNF-R that bound TNF and reacted with anti-TNF-R monoclonal antibodies. In contrast, fMet-Leu-Phe-activated PMN shed a 42-kDa fragment from p75 TNF-R, along with similar amounts of a 28-kDa fragment from p55 TNF-R. Shedding of both TNF-Rs by intact activated PMN was more extensive than shedding caused by elastase and was completely resistant to DFP and MSAAPV-CK. Thus, the TNF-R-releasing activity of azurophil granules is distinct from that operative in intact stimulated PMN and could provide an additional mechanism for the control of cellular responses to TNF at sites of inflammation.  相似文献   

6.
Autosomal dominant periodic fever syndromes are characterized by unexplained episodes of fever and severe localized inflammation. In seven affected families, we found six different missense mutations of the 55 kDa tumor necrosis factor receptor (TNFR1), five of which disrupt conserved extracellular disulfide bonds. Soluble plasma TNFR1 levels in patients were approximately half normal. Leukocytes bearing a C52F mutation showed increased membrane TNFR1 and reduced receptor cleavage following stimulation. We propose that the autoinflammatory phenotype results from impaired downregulation of membrane TNFR1 and diminished shedding of potentially antagonistic soluble receptor. TNFR1-associated periodic syndromes (TRAPS) establish an important class of mutations in TNF receptors. Detailed analysis of one such mutation suggests impaired cytokine receptor clearance as a novel mechanism of disease.  相似文献   

7.
The mechanistic relationship between the signalling for the TNF effects by the human p55 TNF receptor (hu-p55-TNF-R) and the formation of a soluble form of the receptor, which is inhibitory to these effects, was explored by examining the function of C-terminally truncated mutants of the receptor, expressed in rodent cells. The 'wild-type' receptor signalled for a cytocidal effect when cross-linked with specific antibodies and exhibited spontaneous shedding. Shedding of the receptor was not affected by TNF but was markedly enhanced by 4 beta-phorbol-12-myristate-13-acetate (PMA). Receptor mutants with 53%, 83% and 96% C-terminal deletions could not signal for the cytocidal effect. Furthermore, they were found to associate with the endogenous rodent receptors, interfering with their signalling. Yet even the deletion of 96% of the intracellular domain did not abolish shedding of the receptor in response to PMA. These findings suggest that signalling and shedding of the p55 TNF-R are mechanistically distinct.  相似文献   

8.
Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu downward arrow Ser(518) cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P(+1) cleavage site (Ser(518)) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P(-2) His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cell-free system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cis-proteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases.  相似文献   

9.
Several members of the tumour necrosis factor receptor (TNF-R) superfamily can induce cell death. For TNF-R1, Fas/APO-1, DR3, DR6, TRAIL-R1 and TRAIL-R2, a conserved 'death domain' in the intracellular region couples these receptors to activation of caspases. However, it is not yet known how TNF receptor family members lacking a death domain, such as TNF-R2, CD40, LT-betaR, CD27 or CD30, execute their death-inducing capability. Here we demonstrate in different cellular systems that cytotoxic effects induced by TNF-R2, CD40 and CD30 are mediated by endogenous production of TNF and autotropic or paratropic activation of TNF-R1. In addition, stimulation of TNF-R2 and CD40 synergistically enhances TNF-R1-induced cytotoxicity. These findings describe a novel pro-apoptotic mechanism induced by some members of the TNF-R family.  相似文献   

10.
11.
Expression of the two known receptors for TNF was studied in the promyelocytic leukemia cell line HL-60 before and after differentiation of the cells along the granulocyte lineage (induced by incubation with retinoic acid), or along the macrophage lineage (induced by incubation with the phorbol diester, PMA). The extent of inhibition of TNF binding by receptor-specific antisera, as well as the size of the complexes formed after cross-linking TNF to its receptors on intact cells, indicated that both receptor species were expressed on the surface of the undifferentiated HL60 cells. Differentiation into granulocyte-like cells resulted in some increase in TNF binding. The increase was apparently due to enhanced expression of the 75-kDa TNF-R, whereas the amounts of the 55-kDa TNF-R did not change significantly. In contrast, in HL-60 cells induced to differentiate into macrophage-like cells, expression of the 55-kDa TNF-R species was completely abolished. The pattern of TNF-R expression in the differentiated HL-60 cells was similar to that observed in leukocytes isolated from peripheral blood: on granulocytes, there were about equal amounts of both receptor species, whereas on monocytes the 75-kDa receptor was predominant. The loss of 55-kDa receptors during differentiation of HL-60 cells into macrophage-like cells was accompanied by a pronounced decrease in the level of the mRNA for that receptor, suggesting that at least part of the change in TNF-R expression is due to mechanisms that control the amounts of receptor mRNA. Although little is yet known regarding the functional differences between the two receptor species, marked changes in the pattern of their expression, as observed during HL-60 cell differentiation, are likely to alter the kind of response of the cells to TNF and may therefore play an important role in the coordination of TNF effects in the organism.  相似文献   

12.
13.
The generation of proinflammatory eicosanoids in response to tumor necrosis factor (TNF) involves the activation of cytosolic phospholipase A(2) (cPLA(2)), presumably by phosphorylation through extracellular signal-regulated kinases (ERK). Earlier results had suggested that a pathway involving the p55 TNF receptor (TNF-R55), neutral sphingomyelinase (N-SMase), and c-Raf-1 activates ERK and cPLA(2). We have previously shown that a cytoplasmic region of TNF-R55 distinct from the death domain regulates the activation of N-SMase through binding of the adapter protein FAN. Analysis of embryonal fibroblasts from FAN knockout mice revealed that TNF-induced activation of both ERK and cPLA(2) occurs without involvement of FAN. Furthermore, we provide evidence that the TNF-dependent activation of ERK and cPLA(2) requires the intact death domain of TNF-R55. Finally, we demonstrate that in murine fibroblasts cPLA(2) is phosphorylated in response to TNF solely by ERK, but not by p38 mitogen-activated protein kinase, suggesting a signaling pathway from TNF-R55 via the death domain to ERK and cPLA(2).  相似文献   

14.
Death receptors such as the 55 kDa tumor necrosis factor (TNF) receptor (TNF-R55) or Fas can initiate both apoptotic (caspase-dependent) and caspase-independent routes to programmed cell death (PCD). Here, we demonstrate for the first time that the single murine receptor for (TNF)-related apoptosis-inducing ligand (mTRAIL-R2) can induce a caspase-independent form of PCD with necrosis-like features in addition to apoptosis. Analysis of morphological and cellular features of caspase-independent PCD in response to TRAIL and TNF suggests that mTRAIL-R2 and TNF-R55 elicit caspase-independent PCD through similar pathways, although without participation of cathepsins. Cells overexpressing acid ceramidase (AC), an enzyme that metabolizes the sphingolipid ceramide, show enhanced survival from TRAIL-induced caspase-independent PCD but not from apoptosis, implicating a function of ceramide as a key mediator in caspase-independent PCD (but not apoptosis) induced by mTRAIL-R2. In concert with the enhanced resistance of AC-overexpressing cells against caspase-independent PCD induced by TNF, our results suggest that ceramide acts as a common mediator of caspase-independent PCD caused by death receptors such as mTRAIL-R2 and TNF-R55.  相似文献   

15.
16.
The adhesion molecule L-selectin is cleaved rapidly from the surface of activated leukocytes by tumor necrosis factor-alpha converting enzyme, a cell surface metalloprotease, and also undergoes slower constitutive shedding in unactivated cells. The structural features that render it susceptible to shedding are poorly understood. We therefore analyzed the shedding of a series of mutant and chimeric L-selectin molecules. Although murine L-selectin is cleaved at a specific location in the juxtamembrane region 11 amino acids distal to the cell membrane, this cleavage has little sequence specificity. However, proline substitution at the P2' or P3' position or deletion of the epidermal growth factor (EGF) domain completely blocks the rapid phorbol ester-induced cleavage, but does not affect the slower basal proteolytic shedding. Insertion of the 15-residue membrane-proximal region (MPR) of L-selectin into the heterologous protein B7.2 results in a molecule that undergoes constitutive proteolytic turnover. In contrast, insertion of both the EGF domain and the MPR confers susceptibility to both slow constitutive shedding and the rapid proteolytic cleavage induced by phorbol 12-myristate 13-acetate. These results demonstrate that constitutive and induced L-selectin cleavage are separable processes and that the rapid phorbol ester-induced shedding requires the presence of the EGF domain, a sequence that is remote from the cleavage site.  相似文献   

17.
Growth hormone-binding protein (GHBP) is complexed to a substantial fraction of circulating GH. In humans, rabbits, and other species, GHBP derives from proteolytic shedding of the GH receptor (GHR) extracellular domain. In cell culture studies, stimuli such as phorbol ester, platelet-derived growth factor, or serum induce GHR proteolysis, which concomitantly yields shed GHBP in cell supernatants and a cell-associated cytoplasmic domain-containing GHR remnant. This process is sensitive to metalloprotease inhibition, and genetic reconstitution studies identify tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17), a transmembrane metalloprotease, as a GHR sheddase. Stimuli that induce GHR proteolysis render cells less responsive to GH, but the mechanism(s) of this desensitization is not yet understood. In this study, we mapped the rabbit (rb) GHR cleavage site. We adenovirally expressed a C-terminal epitope-tagged rbGHR lacking most of its cytoplasmic domain, purified the remnant protein induced by the phorbol ester, PMA, and derived the cleavage site by N-terminal sequencing of the purified remnant. The N-terminal sequence, (239)FTCEEDFR(246), matched perfectly the rbGHR and suggests that cleavage occurs eight residues from the membrane in the proximal extracellular domain stem region. Deletion and alanine substitution mutagenesis indicated that, similar to other TACE substrates, the spacing of residues in this region, more than their identity, influences GHR cleavage susceptibility. Further, we determined that PMA pretreatment desensitized a cleavage-sensitive GHR mutant, but not a cleavage-insensitive mutant, to GH-induced JAK2 activation. These results suggest that inducible GHR proteolysis can regulate GH signaling.  相似文献   

18.
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.  相似文献   

19.
20.
The in vitro cytotoxic capacity (if not every pleiotropic property) of tumor necrosis factor (TNF) begins by interaction with specific high affinity cell surface receptors. The characterization of receptors and ligand kinetics is reviewed in relationship to cytotoxicity. Decreased receptor number and affinity correlate with sensitivity within a given cell line. In L-M cells (a sensitive tumorigenic fibroblast), TNF induces a biphasic downregulation of receptors. Internalized ligand and receptors are largely cleared before the onset of cell death. Drugs affecting cytotoxicity may act primarily on an early 'association' stage (ligand receptor interaction, internalization or perhaps signal transduction) or on a later 'lytic' stage. Phorbol myristate acetate is an example of the former, while chloroquine, cholera toxin and dibutyryl cyclic AMP are examples of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号