首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of active nuclear protein transport is mediated by the nuclear localization signal (NLS). An NLS-containing karyophile forms a stable complex, termed the nuclear pore-targeting complex, to target nuclear pores. The alpha-subunit of the complex (importin-alpha) binds to the NLS and the beta-subunit (importin-beta) carries the alpha-subunit, bound to the NLS substrate, into the nucleus. To date, five mouse alpha-subunits have been identified and classified into three subfamilies (alpha-P, alpha-Q, and alpha-S). The expression of these alpha-subunits and the beta-subunit in various adult mouse tissues was examined by immunoblotting and immunohistochemistry using antibodies specific for each subfamily of the alpha-subunit or the beta-subunit. The beta-subunit was found to be ubiquitously expressed, whereas each subfamily of the alpha-subunit showed a unique expression pattern in various tissues, especially in brain and testis. In brain, the expression of alpha-P was not observed, whereas alpha-S was significantly expressed in Purkinje cells, and pyramidal cells of the hippocampus and cerebral cortex. In testis, alpha-P was expressed predominantly in primary spermatocytes, whereas alpha-Q was found mainly in Leydig cells. Expression of alpha-S was detected in almost all cells in convoluted seminiferous tubules and Leydig cells to a similar extent. These results suggest that nuclear protein import may be controlled in a tissue-specific manner by alpha-subunit family proteins.  相似文献   

2.
A 97-kD component of nuclear pore-targeting complex (the β-subunit of nuclear pore–targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the α-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the β-subunit. The present study describes an examination of the behavior of the β-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected β-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the β-subunit requires neither Ran- nor α-subunit–binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the β-subunit. In the digitonin-permeabilized cell-free import assay, the β-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the β-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry α-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the β-subunit undergoes a translocation reaction together with the α-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.  相似文献   

3.
4.
5.
We previously reported that the nuclear localization signal (NLS) peptides stimulate the in vitro phosphorylation of several proteins, including a 34 kDa protein. In this study, we show that this specific 34 kDa protein is a novel murine leucine-rich acidic nuclear protein (LANP)-like large protein (mLANP-L). mLANP-L was found to have a basic type NLS. The co-injection of Q69LRan-GTP or SV40 T-antigen NLS peptides prevented the nuclear import of mLANP-L. mLANP-L NLS bound preferentially to Rch1 and NPI-1, but not to the Qip1 subfamily of importin alpha. These findings suggest that mLANP-L is transported into the nucleus by Rch1 and/or NPI-1.  相似文献   

6.
K Weis  U Ryder    A I Lamond 《The EMBO journal》1996,15(8):1818-1825
Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery.  相似文献   

7.
Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.  相似文献   

8.
S A Adam  L Gerace 《Cell》1991,66(5):837-847
We have purified two major polypeptides of 54 and 56 kd from bovine erythrocytes that specifically bind the nuclear location sequence (NLS) of the SV40 large T antigen. When added to a permeabilized cell system for nuclear import, the purified proteins increase by 2- to 3-fold the nuclear accumulation of a fluorescent protein containing the large T antigen NLS. The import stimulation is saturable and dependent upon the presence of cytosol. Nuclear protein accumulation in vitro is sensitive to inactivation by N-ethylmaleimide (NEM). NEM inactivation can be overcome by addition of the purified NLS-binding proteins to the import system. NEM treatment of the purified proteins abolishes their ability to stimulate import but does not affect NLS binding. Our results indicate that the NLS-binding proteins are NEM-sensitive receptors for nuclear import. At least one other NEM-sensitive cytosolic activity and an NEM-insensitive cytosolic activity are also necessary for protein import in vitro.  相似文献   

9.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

10.
A radioiodinated, photoactivable synthetic nonapeptide corresponding to the nuclear location signal (NLS) of SV40 large T antigen has been used in photolabelling reactions with purified mouse liver nuclei, nuclear envelopes and other cellular fractions, to identify specific NLS-binding proteins which may be involved in selective transport of karyophilic proteins. SDS-polyacrylamide gel analysis of photolabelled products demonstrates that a 60 kDa nuclear protein and four nuclear envelope proteins (67, 60, 53 and 47 kDa) bind specifically to the native NLS and not to a mutant NLS or unrelated sequences. This binding shows saturation kinetics, with highest affinity of the NLS for the 60 and 67 kDa proteins. The nuclear 60 kDa NLS-binding protein is identical to the nuclear envelope 60 kDa NLS-binding protein by two-dimensional gel analysis of labelled proteins. Biochemical fractionation of labelled nuclear envelopes suggests that the 53 and 47 kDa proteins are peripheral membrane proteins whereas the 67 and 60 kDa proteins can be localized to the pore complex. The NLS also binds to solubilized 67, 60, 53 and 47 kDa proteins but with decreased affinity. Our results suggest that one of the early steps in selective nuclear transport of proteins may be the recognition of the NLS by the 60 kDa and/or 67 kDa binding proteins present in the nuclear pore complex.  相似文献   

11.
DNA topoisomerase II (topo II) is a major nuclear protein that plays an important role in DNA metabolism. We have isolated the gene for topo II ( TOP2) from the filamentous fungus Aspergillus terreus. The deduced amino acid sequence revealed that topo II consists of 1,587 amino acids and has a calculated molecular weight of 180 kDa; the protein expressed in Escherichia coli has an estimated molecular weight of 185 kDa. Expression of topo II polypeptides tagged with yellow fluorescent protein (YFP) in budding yeast suggests that the C-terminal region of the topo II is essential for transport of the fusion protein into the nucleus. The nuclear localization signal (NLS) sequence of topo II is a non-classical bipartite type containing two interdependent, positively charged clusters separated by 15 amino acids. Alanine scanning mutagenesis and deletion analyses showed further that a stretch of 23 amino acid residues (positions 1,234-1,256) is necessary for nuclear import. In addition, we confirmed, using co-immunoprecipitation and two-hybrid analysis, that this non-classical NLS interacts with importin alpha in budding yeast. These results suggest that the fungal topo II NLS is functional in yeast cells.  相似文献   

12.
The nuclear import of proteins typically requires the presence of a nuclear localization sequence (NLS). Some proteins have more than one NLS, but the significance of having multiple NLSs is unclear. The enzyme 5-lipoxygenase (5-LO) has three NLSs that, unlike the tight cluster of basic residues of the classical SV40 large T antigen NLS, contain dispersed basic residues. When attached to green fluorescent protein (GFP), individual 5-LO NLSs caused quantitatively and statistically less import than the SV40 NLS. Combined 5-LO NLSs produced nuclear import that was comparable to that of the SV40 NLS. As expected, GFP/NLS proteins displayed relatively uniform import in all cells. However, a fusion protein of GFP plus the 5-LO protein, modified to contain only one functional NLS, produced some cells with import and some cells without import. A GFP/5-LO fusion protein containing two functional NLSs produced four identifiable levels of nuclear import. Quantitative and visual analysis of a population of cells expressing the intact GFP/5-LO protein, with three intact NLSs, indicated five levels of nuclear import. This suggested that the subcellular distribution of 5-LO may vary widely in normal cells of the body. Consistent with this, immunohistochemical staining of lung sections found that individual macrophages, in situ, displayed cell-specific levels of import of 5-LO. Since nuclear accumulation is known to affect 5-LO activity, multiple NLSs may allow graded regulation of activity via controlled import. Multiple NLSs on other proteins may likewise allow fine control of protein action through modulation of the level of import.  相似文献   

13.
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein.  相似文献   

14.
Human lens epithelium-derived growth factor (LEDGF)/p75 protein forms a specific nuclear complex with human immunodeficiency virus type 1 (HIV-1) integrase and is essential for nuclear localization and chromosomal association of the viral protein. We now studied nuclear import of LEDGF/p75 in live and semipermeabilized cells. We show that nuclear import of LEDGF/p75 is GTP-, Ran-, importin-alpha/beta-, and energy-dependent and that the protein competes with the canonical SV40 large T antigen nuclear localization signal (NLS) for nuclear import receptors. We identified the NLS of LEDGF/p75 through deletion analysis and site-directed mutagenesis. The LEDGF/p75 NLS, 148GRKRKAEKQ156, belongs to the canonical SV40-like family. Fusion of this short peptide to the amino terminus of Escherichia coli beta-galactosidase rendered the fusion protein nuclear, confirming that the LEDGF/p75 NLS is transferable. Moreover, a single amino acid change in the NLS was sufficient to exclude the mutant LEDGF/p75 protein from the nucleus and abolish nuclear import of HIV-1 integrase.  相似文献   

15.
Li M  Wang S  Cai M  Zheng C 《Journal of virology》2011,85(19):10239-10251
The pseudorabies virus (PRV) early protein UL54 is a homologue of herpes simplex virus 1 (HSV-1) immediate-early protein ICP27, which is a multifunctional protein that is essential for HSV-1 infection. In this study, the subcellular localization and nuclear import signals of PRV UL54 were characterized. UL54 was shown to predominantly localize to the nucleolus in transfected cells. By constructing a series of mutants, a functional nuclear localization signal (NLS) and a genuine nucleolar localization signal (NoLS) of UL54 were for the first time identified and mapped to amino acids (61)RQRRR(65) and (45)RRRRGGRGGRAAR(57), respectively. Additionally, three recombinant viruses with mutations of the NLS and/or the NoLS in UL54 were constructed based on PRV bacterial artificial chromosome (BAC) pBecker2 to test the effect of UL54 nuclear targeting on viral replication. In comparison with the wild-type virus, a recombinant virus harboring an NLS or NoLS mutation of UL54 reduced viral production to different extents. However, mutations of both the NLS and NoLS targeted UL54 to the cytoplasm in recombinant virus-infected cells and significantly impaired viral replication, comparable to the UL54-null virus. In addition, a virus lacking the NLS or the NoLS displayed modest defects in viral gene expression and DNA synthesis. However, deletion of both the NLS and the NoLS resulted in severe defects in viral gene expression and DNA synthesis, as well as production of infectious progeny. Thus, we have identified a classical NLS and a genuine NoLS in UL54 and demonstrate that the nuclear targeting of UL54 is required for efficient production of PRV.  相似文献   

16.
The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites.  相似文献   

17.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

18.
A plant in vitro system for the nuclear import of proteins   总被引:4,自引:1,他引:3  
This paper reports the development of an in vitro system that allows the direct assay of protein import into plant nuclei. In this assay the import of fluorescently labelled karyophilic protein substrates into nuclei isolated from evacuolated tobacco BY-2 suspension cells is monitored. It is demonstrated that import of the fluorescently labelled peptide conjugates is rapid, saturable and nuclear localization signal (NLS)-dependent. Exclusion of high molecular weight (70 kDa) dextran and substrates carrying mutated NLS sequences further underline the specificity of this system. Nuclear translocation of karyophilic import substrates in tobacco, similar to mammalian systems, is inhibited by the non-hydrolysable GTP analogue GTP-γ-S. In contrast, protein uptake is not blocked by wheat germ agglutinin, N-ethyl-maleinimide and iodoacetic acid. Furthermore, it is shown that nuclear import of proteins is only partially inhibited by low temperature (0–4°C). The in vitro nuclear import assay does not depend on exogenously added ATP or cytosolic factors. However, a block of nuclear import with GTP-γ-S could be overcome by the addition of cytosolic extract, suggesting the dependence on cytosolic factors or proteins. These data indicate that the characteristics of nuclear protein import in plant and mammalian cells are similar, but may be, at least in some respects, also different from each other.  相似文献   

19.
Matrin 3, a nuclear matrix protein has potential (1) to withhold promiscuously edited RNAs within the nucleus in cooperation with p54(nrb) and PSF, (2) to mediate NMDA-induced neuronal death, and (3) to modulate promoter activity of genes proximal to matrix/scaffold attachment region (MAR/SAR). We identified a bipartite nuclear localization signal (NLS) of chicken matrin 3 (cmatr3) at residues 583-602. By expressing green fluorescent protein (GFP) fused to the NLS mutant in chicken DT40 cells, we showed an essential role of the NLS for cell proliferation. Furthermore, we showed that both clusters of basic amino acids and a linker of the bipartite NLS were essential and sufficient for the nuclear import of GFP. Exogenous cmatr3 rescued the HeLa cells where human matrin 3 was suppressed by RNA interference, but cmatr3 containing deletions at either of the basic amino acid clusters or the linker could not.  相似文献   

20.
In spite of recent efforts to elucidate the nuclear import pathway of the human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), its exact route as well as the domains that mediate its import are still unknown. Here, we show that a synthetic peptide bearing the amino acid residues 161-173 of the HIV-1 IN is able to mediate active import of covalently attached bovine serum albumin molecules into nuclei of permeabilized cells and therefore was designated as nuclear localization signal-IN (NLS(IN)). A peptide bearing residues 161-173 in the reversed order showed low karyophilic properties. Active nuclear import was demonstrated by using fluorescence microscopy and a quantitative ELISA-based assay system. Nuclear import was blocked by addition of the NLS(IN) peptide, as well as by a peptide bearing the NLS of the simian virus 40 T-antigen (NLS-SV40). The NLS(IN) peptide partially inhibited nuclear import mediated by the full-length recombinant HIV-1 IN protein, indicating that the sequence of the NLS(IN) is involved in mediating nuclear import of the IN protein. The NLS(IN) as well as the full-length IN protein interacted specifically with importin alpha, binding of which was blocked by the NLS(IN) peptide itself as well as by the NLS-SV40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号