首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of mixing on biogas production of a 1.5‐m3 pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37±1°C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion.  相似文献   

2.
This study aimed to investigate potential methane production through anaerobic digestion of dairy manure and co‐digestion with maize silage. Two different anaerobic reactor configurations (single‐stage continuously stirred tank reactor [CSTR] and hybrid anaerobic digester) were used and biogas production performances for each reactor were compared. The HR was planned to enable phase separation in order to improve process stability and biogas production under higher total solids loadings (≥4%). The systems were tested under six different organic loading rates increased steadily from 1.1 to 5.4 g VS/L.d. The CSTR exhibited lower system stability and biomass conversion efficiency than the HR. The specific biogas production of the hybrid system was between 440 and 320 mL/gVS with 81–65% volatile solids (VS) destruction. The hybrid system provided 116% increase in specific biogas production and VS destruction improved by more than 14%. When MS was co‐digested together with dairy manure, specific biogas production rates increased about 1.2‐fold. Co‐digestion was more beneficial than mono‐material digestion. The hybrid system allowed for generating methane enriched biogas (>75% methane) by enabling phase separation in the reactor. It was observed that acidogenic conditions prevailed in the first two compartments and the following two segments as methanogenic conditions were observed. The pH of the acidogenic part ranged between 4.7 and 5.5 and the methanogenic part was between 6.8 and 7.2.  相似文献   

3.

Objectives

To assess the combination of electrocoagulation and anaerobic co-digestion of olive mill wastewaters (OMWW) with other substrates, such as chicken manure, in a continuous stirred tank reactor for biogas production.

Results

Anaerobic digestion of OMWW treated by electrocoagulation allowed higher production of biogas, up to 0.74 l biogas g?1 COD introduced compared to untreated or diluted olive mill wastewaters (OMWW) (0.37 and 0.6 l biogas g?1 COD) respectively. Pretreated OMWW co-digested with chicken manure at different volumic ratios OMWW/manure in a continuous stirred tank reactor under mesophilic conditions revealed that OMWW/manure (7:3 v/v) was optimal for biogas production and process stability.

Conclusion

Anaerobic digestion could achieve promising results in depollution and valorization of OMWW under a continuous stirred tank reactor.
  相似文献   

4.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

5.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

6.
Here, we present the results of lab‐scale experiments conducted in a batch mode to determine the biogas yield of lipid‐rich waste and corn silage under the effect of stirring. Further semi‐continuous experiments were carried out for the lipid‐rich waste with/without stirring. Additionally, it was analyzed how the starter used for the batch experiment influences the digestion process. The results showed a significant stirring effect on the anaerobic digestion only when seed sludge from a biogas plant was used as a starter. In this case, the experiments without stirring yielded only about 50% of the expected biogas for the investigated substrates. The addition of manure slurry to the batch reactor as part of the starter improved the biogas production. The more diluted media in the reactor allowed a better contact between the bacteria and the substrates making stirring not necessary.  相似文献   

7.
An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.  相似文献   

8.
Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.  相似文献   

9.
Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants.  相似文献   

10.
Over millions of years, living organisms have explored and optimized the digestion of a wide variety of substrates. Engineers who develop anaerobic digestion processes for waste treatment and energy production can learn much from this accumulated ‘experience’. The aim of this work is a survey based on the comparison of 190 digestive tracts (vertebrate and insect) considered as ‘reactors’ and their anaerobic processes. Within a digestive tract, each organ is modeled as a type of reactor (continuous stirred-tank, such reactors in series, plug-flow or batch) associated with chemical aspects such as pH or enzymes. Based on this analysis, each complete digestion process has been rebuilt and classified in accordance with basic structures which take into account the relative size of the different reactors. The results show that all animal digestive structures can be grouped within four basic types. Size and/or position in the structure of the different reactors (pre/post treatment and anaerobic microbial digestion) are closely correlated to the degradability of the feed (substrate). Major common features are: (i) grinding, (ii) an extreme pH compartment, and (iii) correlation between the size of the microbial compartment and the degradability of the feed. Thus, shared answers found by animals during their evolution can be a source of inspiration for engineers in designing optimal anaerobic processes.  相似文献   

11.
During leather manufacture, high amounts of chromium shavings, wet by‐products of the leather industry, are produced worldwide. They are stable towards temperatures of up to 110°C and enzymatic degradation, preventing anaerobic digestion in a biogas plant. Hitherto, chromium shavings are not utilized industrially to produce biogas. In order to ease enzymatic degradation, necessary to produce biogas, a previous denaturation of the native structure has to be carried out. In our projects, chromium shavings were pre‐treated thermally and mechanically by extrusion and hydrothermal methods. In previous works, we intensively studied the use of these shavings to produce biogas in batch scale and significant improvement was reached when using pre‐treated shavings. In this work, a scale‐up of the process was performed in a continuous reactor using pre‐treated and untreated chromium shavings to examine the feasibility of the considered method. Measuring different parameters along the anaerobic digestion, namely organic matter, collagen content, and volatile fatty acids content, it was possible to show that a higher methane production can be reached and a higher loading rate can be used when feeding the reactor with pre‐treated shavings instead of untreated chromium shavings, which means a more economical and efficient process in an industrial scenario.  相似文献   

12.
In the present study, the possibility of optimizing biogas production from manure by serial digestion was investigated. In the lab-scale experiments, process performance and biogas production of serial digestion, two methanogenic continuously stirred tank reactors (CSTR) connected in series, was compared to a conventional one-step CSTR process. The one-step process was operated at 55 degrees C with 15d HRT and 5l working volume (control). For serial digestion, the total working volume of 5l was distributed as 70/30%, 50/50%, 30/70% or 13/87% between the two methanogenic reactors, respectively. Results showed that serial digestion improved biogas production from manure compared to one-step process. Among the tested reactor configurations, best results were obtained when serial reactors were operated with 70/30% and 50/50% volume distribution. Serial digestion at 70/30% and 50/50% volume distribution produced 13-17.8% more biogas and methane and, contained low VFA and residual methane potential loss in the effluent compared to the one-step CSTR process. At 30/70% volume distribution, an increase in biogas production was also noticed but the process was very unstable with low methane production. At 13/87% volume distribution, no difference in biogas production was noticed and methane production was much lower than the one-step CSTR process. Pilot-scale experiments also showed that serial digestion with 77/23% volume distribution could improve biogas yields by 1.9-6.1% compared to one-step process. The study thus suggests that the biogas production from manure can be optimized through serial digestion with an optimal volume distribution of 70/30% or 50/50% as the operational fluctuations are typically high during full scale application. However, process temperature between the two methanogenic reactors should be as close as possible in order to derive the benefits of serial coupling.  相似文献   

13.
The wastewater from a food processing factory, characterised by fluctuations of flow rate, organic strength, and pH, were originally treated by a traditional suspended-biomass digester working at about 25?°C. In order to improve the digester efficiency, either in terms of degradation ability or biogas production yield, a set of tests has been carried out on laboratory scale, whose results indicated the way to correctly transform it into an anaerobic hybrid filter. The unacceptable conversion yield of organic substances into biogas observed in the original system has been improved by the presence of the filling medium, due to a marked increase in biomass retention time. The start-up of anaerobic digestion has been studied in this reactor at two different temperatures (25 and 30?°C), in order to evaluate the possible advantage of heating the system, simulating continuous variations in feed strength, pH, and composition.  相似文献   

14.
Chinese silver grass (CSG), a potential subtropical energy crop, was investigated as a co-substrate to enhance the anaerobic digestion of food waste for municipal solid waste treatment. Results showed that 88.1% of food wastes were degraded using CSG as a co-substrate with 45 days of digestion, where the food waste, CSG, and sludge on VS/TS/working volume was 93.14 g/111.55 g/1 L, in which the average biogas production was at 429.3 L/kg solids, and the average methane content was around 60%. During the digestion, the concentrations of ammonium and free ammonia gradually increased to 1448.2 and 265.2 mg/L respectively, without any significant inhibitory effects on biogas production, which is probably due to the buffering effects of CSG. Microbial community analysis showed that microorganisms from the class of Firmicutes and Bacteroidetes were dominant during digestion, and that the microbial community diversity increased with active methanogenesis, suggesting that the addition of substrates contribute to the increase of microbial diversity, and could be beneficial for biogas production. Therefore, using CSG as a co-substrate in the single-stage food waste anaerobic digestion system is a potential simple method to convert CSG into renewable energy and to simultaneously improve food waste treatment.  相似文献   

15.
生物强化技术通过为特定的生物过程"设计"微生物,进而作为一种提升反应系统活力和性能的手段被应用于生物质沼气制备过程,以便加快发酵系统启动时间、增加原料利用率、缩短酸败系统的恢复时间、降低高有机负荷的抑制作用等。本文针对以木质纤维素为原料的沼气制备中的生物强化技术,从生物强化菌剂的构建及标准、生物强化作用的影响因素、生物强化作用机制的探究等几个方面来阐述目前国内外生物强化技术在生物质沼气制备过程中的应用与研究进展,以及存在的问题和解决方案。  相似文献   

16.

Background  

Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools.  相似文献   

17.
Volatile fatty acids (VFA) represent short‐chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full‐scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short‐time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at –20°C was found to be applicable.  相似文献   

18.
Summary A two-stage pilot reactor has been tested for the anaerobic digestion of distillery wastewater with a COD of-10,000 mg/1. In the first stage (residence time 16–72 hours), carbohydrates are fermented to low molecular weight metabolites. The second stage is an upflow reactor (residence time 14 hours) in which these metabolites are converted to biogas. Overall COD elimination is 84% (BOD, 92%) with biogas production 5–7 times the active volume of the upflow reactor per day. The process withstands temporary stress conditions fairly well. The results indicate that anaerobic treatment in the upflow reactor qualifies as an efficient and low cost method for distillery wastewater treatment.  相似文献   

19.
Summary An integrated process involving the production of biogas and the recovery of proteins by anaerobic digestion of piggery manure has been studied. the digestion, effected in a 616 L downflow stationary fixed film reactor, resulted in a biogas production rate of approximately 0.86 m3 per m3 reactor per day (35°C, hydraulic retention time 7.2 days). Treatment of the digested effluent by flocculation, decantation and/or sieving yielded a solid biomass with reduced coliform counts and a protein content of about 14%.  相似文献   

20.
The anaerobic digestion of cellulose was assessed in batch and semi-continuous studies using a carbon felt fixed-bed reactor. In the batch operation, the volatile solids reduction (%) and the cumulative methane production during the mesophilic and thermophilic digestion were 52.2% and 15.9%, 96.7 and 49.2 ml/g-total solid fed, respectively. After 99 days of semi-continuous mesophilic digestion, the degradation of cellulose reached its highest level of 67.6% at the hydraulic retention time of 9 days. The methane production and methane concentration of biogas from the bioreactor were maintained at a steady state. The fixed-bed reactor with carbon felt would be suitable for the efficient anaerobic digestion of cellulose. The biomass distribution in the reactor was, in the liquid phase 0.73 g/l-reactor, in the felt 1.59 g/l-reactor, and on the felt surface 9.86 g/l-reactor, which indicated that most of the microbes were immobilized on the carbon felt fixed-bed in the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号