首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of annexin A3 (human annexin III) solved recently revealed a well-ordered folding of its N-terminus with the side chain of tryptophan 5 interacting with residues at the extremity of the central pore. Since the pore of annexins has been suggested as the ion pathway involved in membrane permeabilization by these proteins, we investigated the effect of the N-terminal tryptophan on the channel activity of annexin A3 by a comparative study of the wild-type and the W5A mutant in structural and functional aspects. Calcium influx and patch-clamp recordings revealed that the mutant exhibited an enhanced membrane permeabilization activity as compared to the wild-type protein. Analysis of the phospholipid binding behavior of wild-type and mutant protein was carried out by cosedimentation with lipids and inhibition of PLA(2) activity. Both methods reveal a much stronger binding of the mutant to phospholipids. The structure is very similar for the wild-type and the mutant protein. The exchange of the tryptophan for an alanine results in a disordered N-terminal segment. Urea-induced denaturation of the wild-type and mutant monitored by intrinsic fluorescence indicates a separate unfolding of the N-terminal region which occurs at lower urea concentrations than unfolding of the protein core. We therefore conclude that the N-terminal domain of annexin A3, and especially tryptophan 5, is involved in the modulation of membrane binding and permeabilization by annexin A3.  相似文献   

2.
The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. All plant annexins possess a conserved tryptophan residue in the AB loop of the first domain; this residue was found to adopt both a loop-in and a loop-out conformation in the bell pepper annexin Anx24(Ca32). In Anx(Gh1), the conserved tryptophan residue is in a surface-exposed position, half way between both conformations observed in Anx24(Ca32). The present structure reveals an unusual sulfur cluster formed by two cysteines and a methionine in domains II and III, respectively. While both cysteines adopt the reduced thiolate forms and are separated by a distance of about 5.5 A, the sulfur atom of the methionine residue is in their close vicinity and apparently interacts with both cysteine sulfur atoms. While the cysteine residues are conserved in at least five plant annexins and in several mammalian members of the annexin family of proteins, the methionine residue is conserved only in three plant proteins. Several of these annexins carrying the conserved residues have been implicated in oxidative stress response. We therefore hypothesize that the cysteine motif found in the present structure, or possibly even the entire sulfur cluster, forms the molecular basis for annexin function in oxidative stress response.  相似文献   

3.
The interactions of two plant annexins, annexin 24(Ca32) from Capsicum annuum and annexin Gh1 from Gossypium hirsutum, with phospholipid membranes have been characterized using liposome-based assays and adsorption to monolayers. These two plant annexins show a preference for phosphatidylserine-containing membranes and display a membrane binding behavior with a half-maximum calcium concentration in the sub-millimolar range. Surprisingly, the two plant annexins also display calcium-independent membrane binding at levels of 10-20% at neutral pH. This binding is regulated by three conserved surface-exposed residues on the convex side of the proteins that play a pivotal role in membrane binding. Due to quantitative differences in the membrane binding behavior of N-terminally His-tagged and wild-type annexin 24(Ca32), we conclude that the N-terminal domain of plant annexins plays an important role, reminiscent of the findings in their mammalian counterparts. Experiments elucidating plant annexin-mediated membrane aggregation and fusion, as well as the effect of these proteins on membrane surface hydrophobicity, agree with findings from the membrane binding experiments. Results from electron microscopy reveal elongated rodlike assemblies of plant annexins in the membrane-bound state. It is possible that these structures consist of protein molecules directly interacting with the membrane surface and molecules that are membrane-associated but not in direct contact with the phospholipids. The rodlike structures would also agree with the complex data from intrinsic protein fluorescence. The tubular lipid extensions suggest a role in the membrane cytoskeleton scaffolding or exocytotic processes. Overall, this study demonstrates the importance of subtle changes in an otherwise conserved annexin fold where these two plant annexins possess distinct modalities compared to mammalian and other nonplant annexins.  相似文献   

4.
P Meers  T Mealy  N Pavlotsky  A I Tauber 《Biochemistry》1992,31(28):6372-6382
Whole cytosol isolated from human neutrophils was found to accelerate the Ca(2+)-dependent fusion of phospholipid vesicles with neutrophil plasma membranes as measured by several fluorescence resonance energy transfer lipid dilution assays or by the fate of an encapsulated aqueous soluble fluorophore. The Ca2+ (threshold of 2-10 microM) and protein concentration dependencies for fusion mediated by purified human neutrophil annexin I (lipocortin I), recombinant annexin I and des(1-9)annexin I showed behavior similar to that of whole cytosol. A monoclonal antibody against the N-terminal region of annexin I strongly inhibited the action of isolated annexins as well as whole cytosol, indicating that annexin I is the major activity of this type in whole neutrophil cytosol and that it functions even in this complex mixture of proteins. Residual Ca(2+)-dependent fusion activity in the absence of cytosol or annexin I was not inhibited by several antibodies against annexin I, implicating an as yet unknown protein. Kinetic analysis of liposomal fusion showed that annexin I, as in the case of synexin, accelerates aggregation of vesicles but not the actual fusion event per se. The disposition of annexin I in liposomal aggregates was studied by monitoring binding of the protein with a pyrene-phospholipid and by simultaneously monitoring vesicular aggregation by turbidity. An antibody to the N-terminus of annexin I inhibited vesicular aggregation but not binding, suggesting that initial binding of annexin I is similar to that of annexin V. A relatively small proportion of the bound annexin was involved in intervesicular linkage, and no exchange of bound annexin to subsequently added vesicles was observed. The lack of extensive contact between lipids of aggregated vesicles was supported by a lack of energy transfer between phospholipid probes on separate aggregating vesicles. Covalent linkage of maleimidyl or photoaffinity phospholipid derivatives with annexin I in vesicular aggregates did not allow complete disaggregation of vesicles by EDTA, suggesting that monomers of annexin I can contact two membranes simultaneously at the point of intervesicular linkage. These data are discussed in terms of possible models for the structure of this site.  相似文献   

5.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand (PEF) protein family. ALG-2 forms a homodimer, a heterodimer with another PEF protein, peflin, and a complex with its interacting protein, named Alix or AIP1. We previously identified annexin XI as a novel ALG-2-binding partner. Both the N-terminal regulatory domain of annexin XI (Anx11N) and the ALG-2-binding domain of Alix/AIP1 are rich in Pro, Gly, Ala, Tyr and Gln. This PGAYQ-biased amino acid composition is also found in the N-terminal extension of annexin VII (Anx7N). Using recombinant ALG-2 proteins and the glutathione S-transferase (GST) fusion proteins of Anx7N and Anx11N, the direct Ca(2+)-dependent interaction was analyzed by a biotin-tagged ALG-2 overlay assay and by a real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. Both GST-Anx7N and GST-Anx11N showed similar binding kinetics against ALG-2 as well as ALG-2-DeltaN23, which lacked the hydrophobic N-terminal region. Two binding sites were predicted in both Anx7N and Anx11N, and the dissociation constants (K(d)) were estimated to be approximately 40-60 nM for the high-affinity site and 500-700 nM for the low-affinity site.  相似文献   

6.
Annexin II, a major cytoplasmic substrate of the src tyrosine kinase, is a member of the annexin family of Ca2+/phospholipid-binding proteins. It is composed of a short N-terminal tail (30 residues) followed by four so-called annexin repeats (each 70-80 residues in length) which share sequence homologies and are thought to form (a) new type(s) of Ca(2+)-binding site(s). We have produced wild-type and site specifically mutated annexin II molecules to compare their structure and biochemistry. The recombinant wild-type annexin II displays biochemical and spectroscopical properties resembling those of the authentic protein purified from mammalian cells. In particular, it shows the Ca(2+)-induced blue shift in fluorescence emission which is typical for this annexin. Replacement of the single tryptophan in annexin II (Trp-212) by a phenylalanine abolishes the fluorescence signal and allows the unambiguous assignment of the Ca(2+)-sensitive spectroscopic properties to Trp-212. This residue is located in the third annexin repeat in a highly conserved stretch of 17 amino acids which are also found in the other repeats and known as the endonexin fold. To study the precise architecture of the Ca2+ site which must reside in close proximity to Trp-212, we changed several residues of the endonexin fold in repeat 3 by site-directed mutagenesis. An analysis of these mutants by fluorescence spectroscopy and Ca(2+)-dependent phospholipid binding reveals that Gly-206 and Thr-207 seem indispensible for a correct folding of this Ca(2+)-binding site.  相似文献   

7.
Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.  相似文献   

8.
Human extracellular superoxide dismutase (hEC-SOD) is a secreted tetrameric protein involved in protection against oxygen free radicals. Because EC-SOD is too large a protein for structural determination by multidimensional NMR, and attempts to crystallize the protein for X-ray structural determination have failed, the three-dimensional structure of hEC-SOD is unknown. This means that alternative strategies for structural studies are needed. The N-terminal domain of EC-SOD has already been studied using the fusion protein FusNN, comprised of the 49 N-terminal amino acids from hEC-SOD fused to human carbonic anhydrase (HCAII). The N-terminal domain in this fusion protein forms a well-defined three-dimensional structure, which probably contains alpha-helical elements and is responsible for the tetramerization of the protein. In this work, we have extended the studies, using site-directed mutagenesis in combination with size-exclusion chromatography, CD, and fluorescence spectroscopy, to investigate the nature of the tetrameric interaction. Our results show that the hydrophobic side of a predicted amphiphatic alpha-helix (formed by residues 14-32) in the N-terminal domain is essential for the subunit interaction.  相似文献   

9.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

10.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   

11.
TRPM7 is an unusual bifunctional protein consisting of an α-kinase domain fused to a TRP ion channel. Previously, we have identified annexin A1 as a substrate for TRPM7 kinase and found that TRPM7 phosphorylates annexin A1 at Ser5 within the N-terminal α-helix. Annexin A1 is a Ca(2+)-dependent membrane binding protein, which has been implicated in membrane trafficking and reorganization. The N-terminal tail of annexin A1 can interact with either membranes or S100A11 protein, and it adopts the conformation of an amphipathic α-helix upon these interactions. Moreover, the existing evidence indicates that the formation of an α-helix is essential for these interactions. Here we show that phosphorylation at Ser5 prevents the N-terminal peptide of annexin A1 from adopting an α-helical conformation in the presence of membrane-mimetic micelles as well as phospholipid vesicles. We also show that phosphorylation at Ser5 dramatically weakens the binding of the peptide to S100A11. Our data suggest that phosphorylation at Ser5 regulates the interaction of annexin A1 with membranes as well as S100A11 protein.  相似文献   

12.
Annexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an α-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1. This study used circular dichroism spectroscopy to show that a rat annexin A1 N-terminal peptide possesses random coil structure in aqueous buffer but an α-helical structure in the presence of small unilamellar vesicles. The binding of peptides to membranes was confirmed by surface pressure (Langmuir film balance) measurements using phosphatidylcholine/phosphatidylserine monolayers, which show a significant increase after injection of rat annexin A1 N-terminal peptides. Lamellar neutron diffraction with human and rat annexin A1 N-terminal peptides reveals an intercalation of the helical peptides with the phospholipid bilayer, with the helix axis lying parallel to the surface of membrane. Our findings confirm that phospholipid membranes assist the folding of the N-terminal peptides into α-helical structures and that this conformation enables favorable direct interactions with the membrane. The results are consistent with the hypothesis that the N-terminal domain of annexin A1 can serve as a secondary membrane binding site in the process of membrane aggregation by providing a peripheral membrane anchor.  相似文献   

13.
大蹼铃蟾三叶因子Bm-TFF2具有较人TFF2更强的促细胞迁移和抗凋亡活性。该研究利用RT-PCR方法扩增得到野生型Bm-TFF2的基因,然后分别构建N端、C端和分子中两个精氨酸突变的突变体,最后连接表达载体产生pET32a(+)/Bm-TFF2突变型重组质粒,转入大肠杆菌中,经37℃培养,IPTG诱导,其融合蛋白主要存在于包涵体中,用组氨酸标签的亲合柱纯化溶解后的包涵体上清,进一步用RP-HPLC纯化得到硫氧还蛋白(TRX)/Bm-TFF2突变型融合蛋白。通过SDS-PAGE和Westernblotting检测分析其纯度和特异性。最终,从1L培养基中得到20mg纯度为95%的三种重组突变型融合蛋白。三种突变型重组蛋白都具有剂量依赖性的促细胞迁移活性,并且其活性无显著差异。该研究为进一步研究Bm-TFF2结构和功能的关系以及揭示其作用的分子机制奠定了基础。  相似文献   

14.
We have cloned the full coding cDNA sequence of chicken annexin V and of a mutant lacking 8 amino acid residues of the N-terminal tail for prokaryotic expression. Both proteins were synthesized in Escherichia coli upon induction with isopropyl thio-β-D-galactoside, and were purified following two different protocols: one based on the ability of these proteins to interact reversibly with liposomes in the presence of calcium, and the other based on two sequential ion-exchange chromatographic steps. Spectroscopical analysis of recombinant annexin V revealed that binding of calcium did not change the circular dichroism spectra indicating no significant changes on the secondary structure; however, a conformational change affecting the exposition to the solvent of the tryptophan residue 187 was detected by analysis of fluorescence emission spectra. Recombinant annexin V binds with high affinity to collagen types II and X, and with lower affinity to collagen type I in a calcium-independent manner. Heat denaturing of collagen decreases this interaction while pepsin-treatment of collagen almost completely abolishes annexin V binding. Mutated annexin V interacts with collagen in a similar way as the nonmutated recombinant protein, indicating that the N-terminal tail of annexin V is not essential for collagen binding.  相似文献   

15.
Annexin II is a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which is particularly enriched on early endosomal membranes and has been implicated in participating in endocytic events. In contrast to other endosomal annexins the association of annexin II with its target membrane can occur in the absence of Ca(2+) in a manner depending on the unique N-terminal domain of the protein. However, endosome binding of annexin II does not require formation of a protein complex with the intracellular ligand S100A10 (p11) as an annexin II mutant protein (PM AnxII) incapable of interacting with p11 is still present on endosomal membranes. Fusion of the N-terminal sequence of this PM AnxII (residues 1-27) to the conserved protein core of annexin I transfers the capability of Ca(2+)-independent membrane binding to the otherwise Ca(2+)-sensitive annexin I. These results underscore the importance of the N-terminal sequence of annexin II for the Ca(2+)-independent endosome association and argue for a direct interaction of this sequence with an endosomal membrane receptor.  相似文献   

16.
The conformational preferences and the solution structure of AnxII(N31), a peptide corresponding to the full-length sequence (residues 1-31) of the human annexin II N-terminal tail domain, were investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. CD results showed that AnxII(N31) adopts a mainly alpha-helical conformation in hydrophobic or membrane-mimetic environments, while a predominantly random structure is adopted in aqueous buffer. In contrast to previous results of the annexin I N-terminal domain peptide [Yoon et al. (2000) FEBS Lett. 484, 241-245], calcium ions showed no effect on the structure of AnxII(N31). The NMR-derived structure of AnxII(N31) in 50% TFE/water mixture showed a horseshoe-like fold comprising the N-terminal amphipathic alpha-helix, the following loop, and the C-terminal helical region. Together, the results establish the first detailed structural data on the N-terminal tail domain of annexin II, and suggest the possibility of the domain to undergo Ca(2+)-independent membrane-binding.  相似文献   

17.
A protein with a relative molecular mass of 31 kDa was specifically extracted by EGTA from a detergent-insoluble fraction of Giardia lamblia. N-terminal sequencing showed this protein to be identical to alpha 1-giardin, a component of the ventral disc which, based on its predicted amino acid sequence, has been classified as annexin XIX. Purified alpha 1-giardin associated with multilamellar phosphatidyl serine-containing vesicles in a Ca(2+)-dependent manner, confirming that it is a functional annexin. Molecular modelling of the amino acid sequence of the giardial annexin into the X-ray structure of annexin V suggests that the Ca(2+)-binding sites, which, as in other annexins, are all located on the convex surface of the molecule, are of the low-affinity type III.  相似文献   

18.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family. ALG-2 forms a homodimer, a heterodimer with another penta-EF-hand protein, peflin, and a complex with its interacting protein, named AIP1 or Alix. By yeast two-hybrid screening using human ALG-2 as bait, we isolated a cDNA of a novel ALG-2-interacting protein, which turned out to be annexin XI. Deletion analysis revealed that ALG-2 interacted with the N-terminal domain of annexin XI (AnxN), which has an amino acid sequence similar to that of the C-terminal region of AIP1/Alix. Using recombinant biotin-tagged ALG-2 and the glutathione S-transferase (GST) fusion protein of AnxN, the direct interaction was analyzed by an ALG-2 overlay assay and by real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. The dissociation constant (K(d)) was estimated to be approximately 70 nM. The Ca(2+)-dependent fluorescence change of ALG-2 in the presence of the hydrophobicity fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was inhibited by mixing with GST-AnxN, suggesting that the Pro/Gly/Tyr/Ala-rich hydrophobic region in AnxN masked the Ca(2+)-dependently exposed hydrophobic surface of ALG-2.  相似文献   

19.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.  相似文献   

20.
In 1993, Huber and co-workers published the structure of an N-terminally truncated version of human annexin A1 lacking the first 32 amino acid residues (PDB code: 1AIN). In 2001, we reported the structure of full-length porcine annexin A1 including the N-terminal domain in the absence of calcium ions (PDB code: 1HM6). The latter structure did not reflect a typical annexin core fold, but rather a surprising interaction of the N-terminal domain and the core domain. Comparing these two structures revealed that in the full-length structure the first 12 residues of the N-terminal domain insert into the core of the protein, thereby replacing and unwinding one of the alpha-helices (helix D in repeat 3) that is involved in calcium binding. We hypothesized that this structure in the absence of calcium ions represents the inactive form of the protein. Furthermore, we proposed that upon calcium binding, the N-terminal domain would be expelled from the core domain and that the core D-helix would reform in the proper conformation for calcium coordination. Herein, we report the X-ray structure of full-length porcine annexin A1 in the presence of calcium. This new structure shows a typical annexin core structure as we hypothesized, with the D-helix back in place for calcium coordination while parts of the now exposed N-terminal domain are disordered. We could locate eight calcium ions in this structure, two of which are octa-coordinated and two of which were not observed in the structure of the N-terminally truncated annexin A1. Possible implications of this calcium-induced conformational switch for the membrane aggregation properties of annexin A1 will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号