首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to discover novel multidrug resistance (MDR) reversal agents for efficient cancer chemotherapy, the unsymmetrical curcumin mimics with various amide moieties (6-19) were synthesized and evaluated their MDR reversal activities in MDR cell line KBV20C. Among the tested compounds, 13, 16, and 17 showed potent MDR reversal activities by inhibiting drug efflux function of P-glycoprotein in KB20C cells, and almost recovered the cytotoxicity of vincristine and paclitaxel against KBV20C cell to the degree of potency against drug sensitive KB cells.  相似文献   

2.
A series of novel benzotriazole N-acylarylhydrazone hybrids was synthesized according fragment-based design strategy. All the synthesized compounds were evaluated for their anticancer activity against 60 human tumor cell lines by NCI (USA). Five compounds: 3d, 3e, 3f, 3o and 3q exhibited significant to potent anticancer activity at low concentrations. Compound 3q showed the most prominent broad-spectrum anticancer activity against 34 tumor cell lines, with mean growth inhibition percent of 45.80%. It exerted the highest potency against colon HT-29 cell line, with cell growth inhibition 86.86%. All leukemia cell lines were highly sensitive to compound 3q. Additionally, compound 3q demonstrated lethal activity to MDA-MB-435 belonging melanoma. Compound 3e exhibited the highest anticancer activity against leukemic CCRF-CEM and HL-60(TB) cell lines, with cell growth inhibition 86.69% and 86.42%, respectively. Moreover, it exerted marked potency against ovarian OVCAR-3 cancer cell line, with cell growth inhibition 78.24%. Four compounds: 3d, 3e, 3f and 3q were further studied through determination of IC50 values against the most sensitive cancer cell lines. The four compounds exhibited highly potent anticancer activity against ovarian cancer OVCAR-3 and leukemia HL-60 (TB) cell lines, with IC50 values in nano-molar range between 25 and 130 nM. They showed 18–2.3 folds more potent anticancer activity than doxorubicin. The most prominent compound was 3e, (IC50 values 29 and 25 nM against OVCAR-3 and HL-60 (TB) cell lines, respectively), representing 10 and 18 folds more potency than doxorubicin. The anti-proliferative activity of these four compounds appeared to correlate well with their ability to inhibit FAK at nano-molar range between 44.6 and 80.75 nM. Compound 3e was a potent, inhibitor of FAK and Pyk2 activity with IC50 values of 44.6 and 70.19 nM, respectively. It was 1.6 fold less potent for Pyk2 than FAK. Additionally, it displayed inhibition in cell based assay measuring phosphorylated-FAK (IC50 = 32.72 nM). Inhibition of FAK enzyme led to a significant increase in the level of active caspase-3, compared to control (11.35 folds), accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining in addition to cell cycle arrest at G2/M phase indicating that cell death proceeded through an apoptotic mechanism.  相似文献   

3.
2-(3-Alkylaminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-ones 13 were synthesized and screened for anti-proliferative activity against three human cancer cell lines, as well as the normal cell line Detroit 551. All of the synthesized target compounds 13 demonstrated potent cytotoxic activity against the cancer cell lines, but weak inhibitory activity toward the normal cell line. 2-(3-Methyl aminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-one (1), one of the potent compounds in vitro, was also tested in an in vivo Hep3B xenograft nude mice model, and its significant anticancer activity was reconfirmed. Therefore, compound 1 merits further investigation as an antitumor clinical trial candidate and potential anticancer agent.  相似文献   

4.
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.  相似文献   

5.
N-Acetyl-S-(p-chlorophenylcarbamoyl)cysteine (NACC) was identified as a metabolite of sulofenur. Sulofenur was demonstrated to have broad activity against solid tumors in preclinical studies but exhibited disappointing clinical responses due to its high protein binding related adverse effects. NACC exhibited low protein binding and excellent activity against a sulofenur sensitive human colon cancer cell line. In this study, analogs of NACC were synthesized and evaluated with four human cancer cell lines. Two of the NACC analogs showed excellent activity against two human melanoma cell lines, while NACC remains the most potent of the series. All three compounds were more potent than dacarbazine, which is used extensively in treating melanoma. NACC was shown to induce apoptosis without affecting the cell cycle. Further, NACC exhibited low toxicity against monkey kidney cells. The selective anticancer activity, low toxicity, an unknown yet but unique anticancer mechanism and ready obtainability through synthesis make NACC and its analogs promising anticancer agents.  相似文献   

6.
In our continuing search for camptothecin (CPT)-derived antitumor drugs, novel 7-substituted CPT derivatives incorporating piperazinyl-sulfonylamidine moieties were designed, synthesized and evaluated for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB, and KB-VIN). All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, and were more potent than irinotecan. Remarkably, most of the compounds exhibited comparable cytotoxicity against the multidrug-resistant (MDR) KB-VIN and parental KB tumor cell lines, while irinotecan lost activity completely against KB-VIN. Especially, compounds 13r and 13p (IC50 0.38 and 0.85 μM, respectively) displayed the greatest cytotoxicity against the MDR KB-VIN cell line and merit further development into preclinical and clinical drug candidates for treating cancer, including MDR phenotype.  相似文献   

7.
Three series of novel spin-labeled rotenone derivatives were synthesized and evaluated for cytotoxicity against four tumor cell lines, A-549, DU-145, KB and KBvin. All of the derivatives showed promising in vitro cytotoxic activity against the tumor cell lines tested, with IC(50) values ranging from 0.075 to 0.738μg/mL. Remarkably, all of the compounds were more potent than paclitaxel against KBvin in vitro, and compounds 3a and 3d displayed the highest cytotoxicity against this cell line (IC(50) 0.075 and 0.092μg/mL, respectively). Based on the observed cytotoxicity, structure-activity relationships have been described.  相似文献   

8.
Chalcone derivatives on estradiol framework have been synthesized. Some of the derivatives showed potent anticancer activity against some human cancer cell lines. Compounds 9 and 19 showed potent activity against MCF-7, a hormone dependent breast cancer cell line. Chalcone 7 was further modified to the corresponding indanone derivative (19) using the Nazarov reaction, which showed better activity than the parent compound against the MCF-7 breast cancer cell line. Active anticancer derivatives were also evaluated for osmotic hemolysis using the erythrocyte as a model system. It was observed that chalcone derivatives showing cytotoxicity against cancer cell lines did not affect the fragility of erythrocytes and hence may be considered as non-toxic to normal cells.  相似文献   

9.
A series of novel 7-(N-substituted-methyl)-camptothecin derivatives was designed, synthesized, and evaluated for in vitro cytotoxicity against four human tumor cell lines, A-549, MDA-MB-231, KB, and KBvin. All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, with IC50 values ranging from 0.0023 to 1.11 μM, and were as or more potent than topotecan. Compounds 9d, 9e, and 9r exhibited the highest antiproliferative activity among all prepared derivatives. Furthermore, all of the compounds were more potent than paclitaxel against the multidrug-resistant (MDR) KBvin subline. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, compounds 9d, 9e, and 9r merit further development as a new generation of camptothecin-derived anticancer clinical trial candidates.  相似文献   

10.
A series of novel monocarbonyl analogues of curcumin have been designed, synthesized and tested for their activity against Molt4, HeLa, PC3, DU145 and KB cancer cell lines. Six of the analogues showed potent cytotoxicity towards these cell lines with IC50 values below 1 μM, which is better than doxorubicin, a US FDA approved drug. Several analogues were also found to be active against both CQ-resistant (W2 clone) and CQ-sensitive (D6) strains of Plasmodium falciparum in an in-vitro antimalarial screening. This level of activity warrants further investigation of the compounds for development as anticancer and antimalarial agents.  相似文献   

11.
In present study, a series of 3-(1,3-diphenyl-1H-pyrazol-4-yl)-N-phenylacrylamide derivatives (5a-8d) were designed, synthesized, and evaluated for HDAC inhibition and tumor cell antiproliferation. All of these compounds are reported for the first time, the chemical structures of these compounds were confirmed by means of (1)H NMR, ESI-MS and elemental analyzes. Among the compounds, compound 8c showed the most potent biological activity against HCT116 cancer cell line (IC(50) of 0.42 ± 0.02 μM for HDAC-1 and IC(50)=0.62 ± 0.02 for HCT116). Docking simulation was performed to position compound 8c into the HDAC active site to determine the probable binding model. The results of antiproliferative assay and western-blot demonstrated that compound 8c with potent inhibitory activity in tumor growth inhibition may be a potential anticancer agent against HCT116 cancer cell.  相似文献   

12.
Nuclear monoamination of a 1,4-naphthohydroquinone with primary aromatic amines was catalysed by the commercial laccase, Novozym 51003, from Novozymes to afford aminonaphthoquinones. The synthesis was accomplished by reacting a mixture of the primary amine and 1,4-naphthohydroquinone in succinate-lactate buffer and a co-solvent, dimethylformamide, under mild reaction conditions in a vessel open to air at pH 4.5 and pH 6.0. Anticancer screening showed that the aminonaphthoquinones exhibited potent cytostatic effects particularly against the UACC62 (melanoma) cancer cell line (GI(50)=3.98-7.54 μM). One compound exhibited potent cytostatic effects against both the TK10 (renal) and the UACC62 (melanoma) cancer cell line. The cytostatic effects of this compound (GI(50)=8.38 μM) against the TK10 cell line was almost as good as that of the anticancer agent, etoposide (GI(50)=7.19μM). Two compounds exhibited potent cytostatic effects against both the UACC62 (melanoma) and the MCF7 (breast) cancer cell lines. The total growth inhibition (TGI) of most of the compounds was better than that of etoposide against the UACC62 cell line. Three compounds (TGI=7.17-7.94 μM) exhibited potent cytostatic effects against the UACC62 cell line which was 7 to 8-fold better than that of etoposide (TGI=52.71 μM). The results are encouraging for further study of the aminonaphthoquinones for potential application in anticancer therapy.  相似文献   

13.
Sixteen different taxoid conjugates were prepared by linking various anticancer compounds, including camptothecin (CPT), epipodophyllotoxin (EP), colchicine (COL), and glycyrrhetinic acid (GA), at the 2'- or 7-position on paclitaxel (TXL, 1) through an ester, imine, amine, or amide bond. Newly synthesized conjugates were evaluated for cytotoxic activity against replication of several human tumor cell lines. Among them, TXL-CPT conjugates, 8-10, were more potent than TXL itself against the human prostate carcinoma cell line PC-3 (ED(50)=14.8, 3.1, 19.4nM compared with 55.5nM), and conjugate 10 was also 8-fold more active than TXL against the LN-CAP prostate cancer cell line. These compounds also possessed anti-angiogenesis ability as well as lower inhibitory effects against a normal cell line (MRC-5). Thus, conjugates 8-10 are possible antitumor drug candidates, particularly for prostate cancer.  相似文献   

14.
A novel series of thiourea and carbamimidothioic acid derivatives was synthesized using natural alkaloid L-norephedrine as a starting material. Structures of the newly synthesized compounds were confirmed by analytical and spectral data. The synthesized compounds were evaluated in vitro for anticancer activity against the human breast (MCF-7), human liver (HEPG2), and human colon (HCT116) cancer cell lines. Best activity of the synthesized compounds was expressed against HEPG2, however, none of the compounds exceeded the IC50 of doxorubicin. The corresponding N-(1-(2-chloroacetoxy)-1-phenylpropan-2-yl)-N′-p-tolylcarbamimidothioic acid was the most potent compound and exhibited higher cytotoxic activity against the human colon cancer cell line (HCT116) when compared with the reference drug doxorubicin. Also, this compound was the most active against the MCF-7 cell line but less active than the positive control.  相似文献   

15.
Plants have natural products which use to possess antiproliferative potential against many cancers. In the present study, six isolated fractions (ethyl acetate, petroleum ether, chloroform, n-butanol, ethanol and aqueous) from Solanum nigrum were evaluated for their cytotoxic effect on different cell lines. Hepatic carcinoma cell line (HepG2), cervical cancer cell line (HeLa) and baby hamster kidney (BHK) used as normal non-cancerous cells were evaluated for cytotoxicity against isolated fractions. Cell viability assay was performed to evaluate the cytotoxicity of all fractions on different cell lines followed by the lactate dehydrogenase and vascular endothelial growth factor assays of most active fraction among all screened for cytotoxic analysis. HPLC analysis of most active fractions against cytotoxicity was performed to check the biological activity of compounds. Results displayed the potent cytotoxic activity of ethyl acetate fraction of S. nigrum against HepG2 cells with IC50 value of 7.89 μg/ml. Other fractions exhibited potent anticancer activity against HepG2 cells followed by HeLa cells. Fractions in our study showed no cytotoxicity in BHK cells. Cytotoxic activity observed in our current study exposed high antiproliferative potential and activity of ethyl acetate fraction against HepG2 cells. The results demonstrated that S. nigrum fractions exhibited anticancer activity against hepatic and cervical cancer cell lines with non-toxic effect in normal cells. These results reveal significant potential of S. nigrum for the therapeutic of cancers across the globe in future.  相似文献   

16.
A total of 17 resveratrol (=(E)-5-[2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol) derivatives were synthesized from resveratrol (RES) through a facile approach. Among them, 13 compounds, 2 and 6-17, were reported for the first time, while 1 and 3-5 had already been reported several years ago. The cytotoxic activities of these compounds were evaluated against human nasopharyngeal epidermoid tumor cell line KB, and compounds 1 and 8-11 showed strong anticancer activities in vitro, comparable with that of 5-fluorouracil, an anticancer drug. On the basis of the experimental data obtained, structure-activity relationships are discussed.  相似文献   

17.
DPP-IV “a moonlighting protein” has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC50 value 24 ± 0.1 nM against A549 cell line.  相似文献   

18.
Hypoxic cells which are common feature of solid tumors are resistant to both anticancer drugs and radiation therapy. Thus, the identification of drugs with the selective toxicity toward hypoxic cells is an important target in anticancer chemotherapy. Tirapazamine has been shown to be an efficient and selective cytotoxin after bioreductive activation in hypoxic cells which is thought to be due to the presence of the 1,4-di-N-oxide. A new series of quinoxaline 1,4-di-N-oxides and fused quinoxaline di-N-oxides were synthesized and evaluated for hypoxic-cytotoxic activity on EAC cell line. Compound 10a was the most potent cytotoxin IC(50) 0.9 microg/mL, potency 75 microg/mL, and was approximately 15 times more selective cytotoxin (HCR>111) than 3-aminoquinoxaline-2-carbonitrile which has been used as a standard (HCR>7.5). Compounds 4 and 3a,b were more selective than the standard. In addition, antitumor activity against Hepg2 (liver) and U251 (brain) human cell lines was evaluated, compounds 9c and 8a were the most active against Hepg2 with IC(50) values 1.9 and 2.9 microg/mL, respectively, however, all the tested compounds were nontoxic against U251 cell line.  相似文献   

19.
A series of chalcone-amidobenzothiazole conjugates (9a-k and 10a,b) have been synthesized and evaluated for their anticancer activity. All these compounds exhibited potent activity and the IC(50) of two potential compounds (9a and 9f) against different cancer cell lines are in the range of 0.85-3.3 μM. Flow cytometric analysis revealed that these compounds induced cell cycle arrest at G2/M phase in A549 cell line leading to caspase-3 dependent apoptotic cell death. The tubulin polymerization assay (IC(50) of 9a is 3.5 μM and 9f is 5.2 μM) and immuofluorescence analysis showed that these compounds effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Further, Annexin staining also suggested that these compounds induced cell death by apoptosis. Moreover, docking experiments have shown that they interact and bind efficiently with tubulin protein. Overall, the current study demonstrates that the synthesis of chalcone-amidobenzothiazole conjugates as promising anticancer agents with potent G2/M arrest and apoptotic-inducing activities via targeting tubulin.  相似文献   

20.
The chalcone skeleton (1,3-diphenyl-2-propen-1-one) is a unique template that is associated with various biological activities. We synthesized Mannich bases of heterocyclic chalcones (9-47) using a one-step Claisen-Schmidt condensation of heterocyclic aldehydes with Mannich bases of acetophenones, and tested the target compounds for cytotoxicity against three human cancer cell lines (prostate, PC-3; breast, MCF-7; nasopharynx, KB) and a multi-drug resistant subline (KB-VIN). Out of the 39 chalcones synthesized, 31 compounds showed potent activity against at least one cell line with IC(50) values ranging from 0.03 to 3.80 microg/mL. Structure-activity relationships (SAR) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号