首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

2.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

3.
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.  相似文献   

4.
5.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   

6.
Hepatocyte transplantation is considered as an alternative to organ transplantation in particular for the treatment of liver metabolic diseases. However, due to the difficulties to obtain a large number of hepatocytes, new sources of cells are needed. These cells could be either of hepatic origin (hepatic stem cells) or extrahepatic such as mesenchymal stem cells or pluripotent stem cells (human embryonic stem cells [hESC] or iPS). We developed a new method to differentiate hESCs into fetal hepatocytes. These conditions recapitulate the main liver developmental stages, using fully defined medium devoid of animal products or unknown factors. The differentiated cells express many fetal hepatocytes markers (cytochrome P450 3A7, albumin, alpha-1-antitrypsin, etc.). The cells display specific hepatic functions (ammonia metabolism, excretion of indocyanin green) and are capable to engraft and express hepatic proteins two months after transplantation into newborn uPAxrag2gc-/- mouse liver. We have also showed that this approach is transposable to human iPS, and further studies on animal models will allow us to compare the in vivo potential of these two sources of pluripotent cells. Finally, only studies on large animals such as nonhuman primates will validate an eventual clinical application.  相似文献   

7.
Mesenchymal stem cells (MSCs) have been induced to differentiate successfully from human embryonic stem cells (hES-MSCs), which could serve as an in vitro source of MSCs. However, the homing behaviors of such cells and their potential utility for liver regeneration in vivo have not been reported. We investigated factors that influenced early homing and the hepatic-directed differentiation potency of hES-MSCs in a mouse model of acute liver injury. The hES-MSCs could be detected 36 h after cell infusion and this was unaffected by the number of cell passages in culture. Pretreatment of hES-MSCs with TNF-α resulted in higher rates of homing of these cells to the injured liver. Interestingly most of the cells homing at an early stage expressed alpha-fetoprotein (AFP), indicating hepatic differentiation. Thus, hES-MSCs can home to the acutely injured liver at high efficiency and undergo hepatic differentiation, suggesting that these cells could be useful for treating acute human liver injury.  相似文献   

8.
9.
Fetal stem cells possess some intriguing characteristics, which delineate them as promising cellular therapeutics. They are less immunogenic, at lower stage of differentiation and have higher potential for repopulation and migration. Furthermore, the fetal stem cells secrete a set of cytokines and growth factors, which stimulate the regeneration of the recipient tissue. The present study indicated that the adhesive fraction of human fetal liver cells possessed the morphological characteristics of mesenchymal stem cells, as well as potential to differentiate into adipocyte and osteoblast lineages. The immunophenotypic analysis showed that the cells expressed CD13, CD73, CD90 and CD105 (typical for mesenchymal stem cells) and lacked the haematopoietic lineage markers CD34 and CD45. Addressing the issue of the low‐temperature storage of the human fetal liver cells, four different methods for cryopreservation were assessed: conventional slow freezing, program freezing and two vitrification protocols. The obtained results demonstrated that the cells were cryotolerant and maintained their properties and differentiation potential after thawing. Program freezing showed to be the most efficient method for cryopreservation of the investigated cells.  相似文献   

10.
Li B  Zheng YW  Sano Y  Taniguchi H 《PloS one》2011,6(2):e17092
Mesenchymal-epithelial transition events are related to embryonic development, tissue construction, and wound healing. Stem cells are involved in all of these processes, at least in part. However, the direct evidence of mesenchymal-epithelial transition associated with stem cells is unclear. To determine whether mesenchymal-epithelial transition occurs in liver development and/or the differentiation process of hepatic stem cells in vitro, we analyzed a variety of murine liver tissues from embryonic day 11.5 to adults and the colonies derived from hepatic stem/progenitor cells isolated with flow cytometry. The results of gene expression, immunohistochemistry and Western blot showed that as liver develops, the expression of epithelial markers such as Cytokeratin18 and E-cadherin increase, while expression of mesenchymal markers such as vimentin and N-cadherin decreased. On the other hand, in freshly isolated hepatic stem cells, the majority of cells (65.0%) co-express epithelial and mesenchymal markers; this proportion is significantly higher than observed in hematopoietic cells, non-hematopoietic cells and non-stem cell fractions. Likewise, in stem cell-derived colonies cultured over time, upregulation of epithelial genes (Cytokeratin-18 and E-cadherin) occurred simultaneously with downregulation of mesenchymal genes (vimentin and Snail1). Furthermore, in the fetal liver, vimentin-positive cells in the non-hematopoietic fraction had distinct proliferative activity and expressed early the hepatic lineage marker alpha-fetoprotein. CONCLUSION: Hepatic stem cells co-express mesenchymal and epithelial markers; the mesenchymal-epithelial transition occurred in both liver development and differentiation of hepatic stem/progenitor cells in vitro. Besides as a mesenchymal marker, vimentin is a novel indicator for cell proliferative activity and undifferentiated status in liver cells.  相似文献   

11.
Mesenchymal stromal cells (MSCs) reside in many organs including lung, as shown by their isolation from fetal lung tissues, bronchial stromal compartment, bronchial-alveolar lavage and transplanted lung tissues. It is still controversial whether lung MSCs can undergo mesenchymal-to-epithelial-transition (MET) and possess immune regulatory properties. To this aim, we isolated, expanded and characterized MSCs from normal adult human lung (lung-hMSCs) and compared with human bone marrow-derived MSCs (BM-hMSCs). Our results show that lung-MSCs reside at the perivascular level and do not significantly differ from BM-hMSCs in terms of immunophenotype, stemness gene profile, mesodermal differentiation potential and modulation of T, B and NK cells. However, lung-hMSCs express higher basal level of the stemness-related marker nestin and show, following in vitro treatment with retinoic acid, higher epithelial cell polarization, which is anyway partial when compared to a control epithelial bronchial cell line. Although these results question the real capability of acquiring epithelial functions by MSCs and the feasibility of MSC-based therapeutic approaches to regenerate damaged lung tissues, the characterization of this lung-hMSC population may be useful to study the involvement of stromal cell compartment in lung diseases in which MET plays a role, such as in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.  相似文献   

12.
The ability of MSCs (mesenchymal stem cells) to differentiate between other cell types makes these cells an attractive therapeutic tool for cell transplantation. This project was designed to improve transdifferentiation of human MSCs into liver cells using IGF-I (insulin-like growth factor 1) which, despite its important role in liver development, has not been used for in vitro hepatic differentiation. In the present study, the MSCs derived from healthy human bone marrow samples were cultured and characterized by immunophenotyping and differentiation potential into osteoblast and adipocytes. Transdifferentiation into hepatocyte-like cells was performed in the presence/absence of IGF-I in combination with predefined hepatic differentiation cocktail. To evaluate transdifferentiation, morphological features, immuno-cytochemical staining of specific biological markers and hepatic functions were assessed. Morphological assessment and evaluation of glycogen content, albumin and AFP (α-feto protein) expression as well as albumin and urea secretion revealed statistically significant difference between experimental groups compared with the control. Morphology and function (albumin secretion) of IGF-I-treated cells were significantly better than IGF-I-free experimental group. To the best of our knowledge, our study is the first to demonstrate that the combination of IGF-I with the predefined hepatic differentiation cocktail will significantly improve the morphological features of the differentiated cells and albumin secretion.  相似文献   

13.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

14.
Background aimsThe Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality.MethodsA rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum.ResultsBM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation.ConclusionsQuantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.  相似文献   

15.
16.
Hair follicle harbors a rich stem cell pool with mesenchymal lineage differentiation potential. Although previous studies with rodent cells demonstrated that hair follicle sheath and papilla cells possess multi-lineage differentiation potential, human hair follicle derived mesenchymal stem cells (hHF-MSCs) have not been characterized in detail in terms of their multipotency. In addition, it is not clear whether these cells are true stem cells that can differentiate along multiple lineages or whether they represent a collection of progenitor cells with restricted differentiation potential. Here we report that hHF-MSCs are highly proliferative cells that can be maintained in culture for ~ 45 population doublings before they start to show signs of cellular senescence. Under appropriate culture conditions, hHF-MSCs differentiated along the myogenic, osteogenic, adipogenic and chondrogenic lineages, as demonstrated by kinetic gene expression profiling and functional assays. Interestingly, the differentiation potential decreased with time in culture in a lineage-specific manner. Specifically, myogenesis and chondrogenesis showed a moderate decrease over time; osteogenesis was maximum at intermediate passages and adipogenesis was highly sensitive to long-term culture and was diminished at late passages. Finally, hHF-MSCs were clonally multipotent as the majority of hHF-MSCs clones (73%) demonstrated bi- or tri-lineage differentiation potential. These results suggest that hHF-MSCs may present as an alternative source of easily accessible, autologous stem cells for tissue engineering and regenerative medicine.  相似文献   

17.
The specific features of the plasticity of adult stem cells are largely unknown. Recently, we demonstrated the hepatic differentiation of human adipose tissue-derived mesenchymal stem cells (AT-MSCs). To identify the genes responsible for hepatic differentiation, we examined the gene expression profiles of AT-MSC-derived hepatocytes (AT-MSC-Hepa) using several microarray methods. The resulting sets of differentially expressed genes (1639 clones) were comprehensively analyzed to identify the pathways expressed in AT-MSC-Hepa. Clustering analysis revealed a striking similarity of gene clusters between AT-MSC-Hepa and the whole liver, indicating that AT-MSC-Hepa were similar to liver with regard to gene expression. Further analysis showed that enriched categories of genes and signaling pathways such as complementary activation and the blood clotting cascade in the AT-MSC-Hepa were relevant to liver-specific functions. Notably, decreases in Twist and Snail expression indicated that mesenchymal-to-epithelial transition occurred in the differentiation of AT-MSCs into hepatocytes. Our data show a similarity between AT-MSC-Hepa and the liver, suggesting that AT-MSCs are modulated by their environmental conditions, and that AT-MSC-Hepa may be useful in basic studies of liver function as well as in the development of stem cell-based therapy.  相似文献   

18.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold great potential for their therapeutic use in various clinical diseases. Many publications have reported on human blood-derived alternatives to animal serum for culturing mesenchymal stem cells, such as human serum, allogenic umbilical cord blood serum, and human platelet derivatives. However, it is not clear whether human umbilical cord blood plasma (UCBP), as the surplusage of umbilical cord blood mesenchymal stem cell extraction, could be used. In this study, in order to make the best of umbilical cord blood, the human UCBP was dialyzed to replace fetal bovine serum (FBS) in the culture medium. hUC-MSCs were cultured in the new medium. Cell growth rate, specific biomarkers, and differentiation properties were detected to characterize the cell proliferation and MSC-specific properties. The hUC-MSCs cultured in such derived medium were verified with proliferation rate, cluster differentiation markers, cell cycle, as well as differentiation capabilities. Such dialyzed human UCBP is fully comparable with, if not superior to, FBS in deriving and culturing hUC-MSCs.  相似文献   

19.
Within the first 24 h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis. Results indicate that differentiating hASC, unlike 3T3-L1 cells do not undergo clonal expansion and p130 expression gradually diminishes across differentiation. However, p107 expression is transiently increased during hASC differentiation in a manner analogous to 3T3-L1 cells suggesting a similar role for p107 in terminal differentiation in human adipocytes.  相似文献   

20.
BACKGROUND: The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. RESULTS: Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry.RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARgamma, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. CONCLUSION: The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号