首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

5.
Wu S  Liu Y  Zhao G  Wang J  Sun W 《Biochimie》2006,88(3-4):237-244
A d-carbamoylase from Sinorhizobium morelens S-5 was purified and characterized. The enzyme was purified 189-fold to homogeneity with a yield of 19.1% by aqueous two-phase extraction and two steps of column chromatography. The enzyme is a homotetramer with a native molecular mass of 150 kDa and a subunit relative molecular mass of 38 kDa. The optimum pH and temperature of the enzyme were pH 7.0 and 60 degrees C, respectively. The enzyme showed high thermal and oxidative stability. It was found to have a K(m) of 3.76 mM and a V(max) of 383 U/mg for N-carbamoyl-d-p-hydroxyphenylglycine. The hyuC gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the hyuC gene exhibited high homology to the amino acid sequences of d-carbamoylase from other sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity from the recombinant. Our results show that the enzyme has great potential for industrial application.  相似文献   

6.
7.
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85 degrees C and the enzyme exhibited a high level of heat stability.  相似文献   

8.
The trehalose-phosphate synthase (TPS) of Mycobacterium smegmatis was previously purified to apparent homogeneity and several peptides from the 58 kDa protein were sequenced. Based on that sequence information, the gene for TPS was identified in the Mycobacterium tuberculosis genome, and the gene was cloned and expressed in Escherichia coli with a (His)6 tag at the amino terminus. The TPS was expressed in good yield and as active enzyme, and was purified on a metal ion column to give a single band of approximately 58 kDa on SDS/PAGE. Approximately 1.3 mg of purified TPS were obtained from a 1-L culture of E. coli ( approximately 2.3 g cell paste). The purified recombinant enzyme showed a single band of approximately 58 kDa on SDS/PAGE, but a molecular mass of approximately 220 kDa by gel filtration, indicating that the active TPS is probably a tetrameric protein. Like the enzyme originally purified from M. smegmatis, the recombinant enzyme is an unusual glycosyltransferase as it can utilize any of the nucleoside diphosphate glucose derivatives as glucosyl donors, i.e. ADP-glucose, CDP-glucose, GDP-glucose, TDP-glucose and UDP-glucose, with ADP-glucose, GDP-glucose and UDP-glucose being the preferred substrates. These studies prove conclusively that the mycobacterial TPS is indeed responsible for catalyzing the synthesis of trehalose-P from any of the nucleoside diphosphate glucose derivatives. Although the original enzyme from M. smegmatis was greatly stimulated in its utilization of UDP-glucose by polyanions such as heparin, the recombinant enzyme was stimulated only modestly by heparin. The Km for UDP-glucose as the glucosyl donor was approximately 18 mm, and that for GDP-glucose was approximately 16 mm. The enzyme was specific for glucose-6-P as the glucosyl acceptor, and the Km for this substrate was approximately 7 mm when UDP-glucose was the glucosyl donor and approximately 4 mm with GDP-glucose. TPS did not show an absolute requirement for divalent cations, but activity was increased about twofold by 10 mm Mn2+. This recombinant system will be useful for obtaining sufficient amounts of protein for structural studies. TPS should be a valuable target site for chemotherapeutic intervention in tuberculosis.  相似文献   

9.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

10.
11.
The primary sequence of wheat germ initiator tRNA has been determined using in vitro labelling techniques. The sequence is: pAUCAGAGUm1Gm2GCGCAG CGGAAGCGUm2GG psi GGGCCCAUt6AACCCACAGm7GDm5Cm5CCAGGA psi CGm1AAACCUG*GCUCUGAUACCAOH. As in other eukaryotic initiator tRNAs, the sequence -T psi CG(A)- present in loop IV of virtually all tRNA active in protein synthesis is absent and is replaced by -A psi CG-. The base pair G2:C71 present in all other initiator tRNAs recognized by E. coli Met-tRNA transformylase is absent and is replaced by U2:A71. Since wheat germ initiator tRNA is not formylated by E. coli Met-tRNA transformylase this implies a possible role of the G2:C71 base pair present in other initiator tRNAs in formylation of initiator tRNA species.  相似文献   

12.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

13.
A thermostable aspartase gene (aspB) from Bacillus sp. YM55-1 was cloned and the gene sequenced. The aspB gene (1407 bp ORF) encodes a protein with a molecular mass of 51 627 Da, consisting of 468 amino-acid residues. An amino-acid sequence comparison revealed that Bacillus YM55-1 aspartase shared 71% homology with Bacillus subtilis aspartase and 49% with Escherichia coli and Pseudomonas fluorescens aspartases. The E. coli TK237/pUCASPB strain, which was obtained by transforming E. coli TK237 (aspartase-null strain) with a vector plasmid (pUCASPB) containing the cloned aspB gene, produced a large amount of the enzyme corresponding to > 10% of the total soluble protein. The over-expressed recombinant enzyme (native molecular mass: 200 kDa) was purified effectively and rapidly using heat treatment and affinity chromatography. In order to probe the catalytic residues of this enzyme, two conserved amino-acid residues, Lys183 and His134, were individually mutated to alanine. Although the tertiary structure of each mutant was estimated to be the same as that of wild-type aspartase in CD and fluorescence measurements, the Lys183Ala mutant lost its activity completely, whereas His134Ala retained full activity. This finding suggests that Lys183 may be involved in the catalytic activity of this thermostable Bacillus YM55-1 aspartase.  相似文献   

14.
We have obtained collections of recombinant Escherichia coli plasmids containing restriction fragments of Neurospora crassa mitochondrial DNA cloned into pBR322. By hybridization of 32P end-labeled total mitochondrial tRNAs and seven different purified tRNAs to restriction digests of mitochondrial DNA and of recombinant plasmids carrying specific restriction fragments, we have located the tRNA genes on the mitochondrial DNA. We have found that the mitochondrial tRNA genes are present in two major clusters, one between the two ribosomal RNA genes and the second closely following the large rRNA gene. Only one of the two DNA strands within these clusters codes for tRNAs. All of the genes for the seven specific purified tRNAs examined--those for alanine, formylmethionine, leucine 1, leucine 2, threonine, tyrosine, and valine--lie within these clusters. Interestingly, the formylmethionine tRNA hybridizes to two loci within one of these gene clusters. We have obtained a fairly detailed restriction map of part of this cluster and have shown that the two "putative" genes for formylmethionine tRNA are not arranged in tandem but are separated by more than 900 base pairs and by at least two other tRNA genes, those for alanine and for leucine 1 tRNAs.  相似文献   

15.
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.  相似文献   

16.
A58, the conserved adenosine residue in the T psi C loop of tRNAs, is methylated to m1A 58 in an extreme thermophile, Thermus thermophilus HB27. The enzyme catalyzing this methyltransfer reaction was purified from the thermophle. The substrate specificity of the enzyme was investigated by using tRNA fragments. The enzyme can transfer the methyl group to the 3'-half fragment of E. coli initiator tRNA, indicating that the main recognition site of the enzyme exists in the 3' half of tRNA including the T-loop and the T-stem.  相似文献   

17.
In contrast to all other known tRNAs, mammalian tRNA1Val contains two adenosines A59 and A60, opposite to U54 and psi 55 in the U psi CG sequence of the T psi C loop, which could form unusual A:U (or A: psi pairs in addition to the five "normal" G:C pairs. In order to measure the number of G:C and A:U (A: psi) pairs in the T psi C stem, we prepared the 30 nucleotide long 3'-terminal fragment of this tRNA by "m7G-cleavage". From differentiated melting curves and temperature jump experiments it was concluded that the T psi C stem in this fragment is in fact extended by an additional A60:U54 pair. A dimer of this fragment with 14 base pairs was characterized by gel electrophoresis and by the same physical methods. An additional A:U pair in the tRNA1Val fragment does not necessarily mean that this is also true for intact tRNA. However, we showed that U54 is far less available for enzymatic methylation in mammalian tRNA1Val compared to tRNA from T-E. coli. This clear difference in U54 reactivity, together with the identification of an extra A60:U54 pair in the U psi CG containing fragment suggests the presence of a 6 base pair T psi C stem and a 5 nucleotide T psi C loop in this tRNA.  相似文献   

18.
L-阿拉伯糖异构酶是生物法生产新型功能性因子D-塔格糖最为有效的酶。本文获得了一种新型耐热L-阿拉伯糖异构酶的编码基因araA,来源于Bacillus stearothermophilis IAM 11001,经NCBI Blastn分析,与GenBank中Thermus sp. IM6501 araA序列的同源性为95%,并将该新基因提交到GenBank,获得登陆号:EU394214。以pET-22b(+)为载体质粒,E. coli BL21(DE3)为宿主细胞,构建了基因重组菌,IPTG可诱导目的蛋白的过量表达;经亲和层析纯化的重组蛋白样品进行SDS-PAGE电泳分析,约在59 kDa处出现显著的特征蛋白条带;同时对重组L-AI的活性进行了初步研究,全细胞反应24小时D-塔格糖的转化率为39.8%。  相似文献   

19.
The RNA modification enzyme, tRNA pseudouridine synthase I has been isolated in 95% purity from an Escherichia coli strain harboring a multicopy plasmid with a 2.3-kilobase pair insert from the hisT operon. Its molecular size, amino acid composition, and amino-terminal sequence correspond to those predicted by the structure and expression of the hisT gene. Enzyme activity, as measured by a 3H release assay, is unaffected by pretreatment of tRNA pseudouridine synthase I with micrococcal nuclease and is optimized by the addition of a monovalent cation and thiol reductant. The activity is inhibited by all tRNA species tested, including substrates, modified tRNAs, nonsubstrates, or tRNAs containing 5-fluorouridine. Binding of tRNA pseudouridine synthase I occurs with both substrate and nonsubstrate tRNAs and does not require a monovalent cation. Our findings are consistent with a multistep mechanism whereby tRNA pseudouridine synthase I first binds nonspecifically and then forms transient covalent adducts with tRNA substrates. In the absence of other proteins, purified tRNA pseudouridine synthase I forms psi at all three modification sites known to be affected in hisT mutants. The 36.4-kDa polypeptide product of the gene adjacent to hisT, whose translation is linked to that of tRNA pseudouridine synthase I, is not a functional subunit for tRNA pseudouridine synthase I activity, nor is it a separate synthase acting at one of the three loci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号