首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

2.
The 3H-labeled prostaglandin D2 [( 3H]PGD2) binding protein in the membrane fraction of mastocytoma P-815 cells was characterized. The specific binding of [3H]PGD2 to the cells or the membranes reached a maximum at pH 5.6, and was saturable, displaceable and of high affinity when incubated at 0 or 37 degrees C. The Bmax values for [3H]PGD2 binding in the two preparations at pH 5.6 were much higher at 0 degrees C than at 37 degrees C, whereas the Kd values were almost equal (85.3 nM for the cells and 80.5 nM for the membranes, respectively). High specific [3H]PGD2 binding activity in the mildly acid-treated cells was still observed when the external pH was raised from 5.6 to 7.2. Furthermore, specific [3H]PGD2 binding to the membranes (at 0 degrees C, pH 5.6) increased on addition of phosphatase inhibitors (NaF and molybdate) in the presence of 10 microM ATP, but practically disappeared on pretreatment of the membranes with phosphatase. On incubation of the membrane with [gamma-32P]ATP and molybdate, the stimulated incorporation of the [32P]phosphate into several peptides, including ones having an Mr of around 100,000-120,000, was observed. These results suggest that [3H]PGD2 binding in the mastocytoma P-815 cell membrane is controlled through phosphorylation-dephosphorylation of the receptor itself.  相似文献   

3.
Prostaglandin (PG) E2 (greater than or equal to 1.6 nM) and PGD2 (greater than or equal to 16 nM) inhibited polymorphonuclear neutrophil (PMN) degranulation responses to leukotriene (LT) B4 and platelet-activating factor (PAF) whereas PGF2 alpha was bioinactive. [3H]PGE2 and [3H]PGD2 bound to PMN and isolated, plasmalemma-enriched PMN membranes. Binding was time-dependent, specific, saturable, and reversible. Competitive studies indicated that the two PGs bound to distinctly different sites. PMN had high (Kd = 1 nM; Rt = 150/cell) and low (Kd = 100 nM; Rt = 5800/cell) affinity PGE2 binding sites. Only a single type of PGD2 binding site (Kd = 13 nM; Rt = 5100/cell) was detected. We conclude that PGE2 and PGD2 bind to their respective, plasmalemmal receptors to attenuate PMN function. The PGs may act as endogenous stop signals to limit the action of concurrently formed excitatory signals, eg., LTB4 and PAF.  相似文献   

4.
To determine the type and the relative amount of prostaglandins (PGs) synthesized by various neural tissues, homogenates of meninges, dorsal root ganglia (DRG) capsules, decapsulated DRG, and unsheathed sciatic nerves were incubated with [1-14C]arachidonic acid. Homogenates of cultured cells (meningeal cells, fibroblasts, and nonneuronal or neuronal DRG cells) were used to specify the cells producing particular PGs. The highest synthetic capacity was found in fibroblast-rich tissues (meninges and DRG capsules) and in cultures of meningeal cells or fibroblasts. Two major cyclooxygenase products were formed: [14C]PGE2 and an unusual 14C-labeled compound, Y. The accumulation of compound Y, corresponding probably to 15-hydroperoxy PGE2, was completely impaired by addition of exogenous GSH, which conversely enhanced the synthesis of [14C]PGE2 and promoted the formation of [14C]PGD2. In contrast, decapsulated DRG or unsheathed sciatic nerves displayed a 10-20 times lower capacity to synthesize PGs than fibroblast-rich tissues and produced mainly [14C]PGE2 and [14C]PGD2. In this case, [14C]PGE2 or [14C]PGD2 synthesis was neither enhanced nor promoted by addition of exogenous GSH. Neuron-enriched DRG cell cultures allowed us to specify that [14C]PGD2 is the major prostanoid produced by primary sensory neurons as compared with nonneuronal DRG cells. Because PGD2 synthesis in DRG and more specifically in DRG neurons does not depend on exogenous GSH and differs from PGD2 synthesis in fibroblast-rich tissues, it is concluded that at least two distinct enzymatic processes contribute to PGD2 formation in the nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Newly formed prostaglandins (PGs), which are assumed to act as modulators of afferent sensory messages, were studied in chick dorsal root ganglia (DRG) during development. [1-14C]Arachidonic acid was converted by DRG homogenates from 1-week-old chickens into two major 14C-PGs: PGE2 and PGD2. The enzymatic conversion of arachidonic acid was characterized as follows: (a) Boiled preparations were inactivated; (b) synthesis of PGs was inhibited by pretreatment with aspirin or indomethacin and enhanced by esculetin, a protector of cyclooxygenase; and (c) [14C]PGE2 and [14C]PGD2 accumulation was a protein dose-dependent process. Further fractionation of crude homogenates indicated that PG endoperoxide synthetase (EC 1.14.99.1) and PGE2 synthetase (EC 5.3.99.3) were membrane-bound enzymes, whereas PGD2 synthetase (EC 5.3.99.2) was recovered in the cytosol. During development, from embryonic day 10 to day 14 after hatching, PGD2 synthetase activity remained constant; in contrast, a sharp rise in [14C]PGE2 synthesis was observed from embryonic day 14 to 18. The time curves of PGD2 and PGE2 synthetase specific activity may be related to changes taking place in the cell population of developing DRG. It is therefore suggested that arachidonic acid would be enzymatically converted early into PGD2 by maturing ganglion cells and then later into PGE2 by proliferating fibroblasts.  相似文献   

6.
The binding site for [3H]SQ29,548, a potent and selective thromboxane A2 (TXA2) receptor antagonist, was studied in cultured vascular endothelial cells (VEC) of the rat aorta. Specific binding of [3H]SQ29,548 to rat VEC at 24 degrees C was saturable, displaceable and of high affinity. Scatchard analysis of equilibrium binding studies indicated that rat VEC contain a single class of binding sites with a Kd of 2.7 nM. The number of maximum binding sites (25.8 fmol/10(6) cells) for [3H]SQ29,548 on rat VEC was respectively 23 and 3.2 times more than that on rat platelets and rat vascular smooth muscle cells. Four TXA2 receptor antagonists and U46619 completely suppressed [3H]SQ29,548 binding to rat VEC, whereas other prostanoids, such as PGD2, PGF2 alpha, PGE1 and Iloprost, displaced the ligand binding only at considerably higher concentrations. These results suggest that the specific receptor for TXA2 is present in rat vascular endothelial cells.  相似文献   

7.
Human Retinas Synthesize and Release Acetylcholine   总被引:2,自引:1,他引:1  
Human retinas have the capacity to synthesize and release [3H]acetylcholine ([3H]ACh) after an incubation in [3H]choline ([3H]Ch). Synthesis of [3H]Ch by retinal homogenates was determined using either high-voltage paper electrophoresis (HVPE) or a two-step enzymatic/extraction assay for separating [3H]ACh from [3H]Ch. The enzymatic/extraction assay is shown to be accurate over a wide range of concentrations (10(-6)-10(-12) M). Homogenates of human retina synthesize [3H]ACh from [3H]Ch. We find an approximate Km of 50 microM and a Vmax of about 20 nmol/mg protein/h (at 37 degrees C) for the synthesis of labeled ACh by retinal homogenates. Human retinas also release [3H]ACh after a pulse of [3H]Ch. Release of labeled transmitter is stimulated by potassium depolarization. The potassium-stimulated release is partially blocked by magnesium or cobalt ions. Release data were analyzed by both the enzymatic/extraction assay and HVPE; the results are qualitatively identical in both cases. The data reported here provide additional evidence for cholinergic neurotransmission in the human retina.  相似文献   

8.
Tritiated forms of polyglutamyl folates are not commercially available but are often needed for experimental uses in folate biochemistry. Thus, considerable interest exists in the preparation of polyglutamyl [3H]folates from the commercial monoglutamyl [3H]folates. However, refinement of established enzymatic and biological synthesis methods is still needed. To address this need we developed improved procedures for the conversion of monoglutamyl [3H]folates to various polyglutamyl forms. In the bacterial synthesis, Lactobacillus casei was grown in the presence of 1 ng/ml (2.27 nM) [3H]folic acid in Folic Acid Casei Medium. Washed cells were resuspended in 2% sodium ascorbate containing 10 mM β-mercaptoethanol and heated to release the folates. The extracted [3H]folates were purified on a folate-binding protein affinity column and then applied to a Sephadex G-10 column to separate the eluted poly- from the monoglutamyl folate species. High performance liquid chromatography with multichannel electrochemical detection indicated that the bacterial synthesis yielded predominantly polyglutamates of [3H]5-methyltetrahydrofolate and [3H]5-formyltetrahydrofolate (di- through heptaglutamates). The alternative method consisted of enzymatic polyglutamylation of [3H]folic acid catalyzed by recombinant Escherichia coli folylpolyglutamate synthetase. This enzymatic synthesis yielded predominantly tri-, tetra-, and pentaglutamyl species for the [3H]folate substrate.  相似文献   

9.
Binding of [3H]-SQ 29,548 was characterized to soluble thromboxane A2/prostaglandin H2 (TP) receptors from human platelet membranes as a means of examining ligand-receptor interactions outside the lipophilic environment of the cell membrane. Kinetic determination revealed a rate of ligand-receptor association of 1.4 x 10(7) +/- 0.2 M-1 x min-1 and a rate of dissociation of 0.5 +/- 0.07 min-1. The resultant equilibrium affinity constant was 36.3 +/- 5.8 nM. Saturation binding analysis revealed a single class of [3H]-SQ 29,548 binding sites with an affinity constant of 39.7 +/- 4.3 nM and a B(max) of 1735.7 +/- 69.1 fmol/mg protein. Specific [3H]-SQ 29,548 binding was inhibited by specific TP receptor antagonists and agonists in a rank order of potency similar to that seen in platelet membranes: SQ 33,961 much greater than SQ 29,548 greater than BM 13,505 greater than or equal to U 46619 greater than BM 13,177. PGD2, PGE2 and PGI2 did not appreciably inhibit the specific binding of [3H]-SQ 29,548. These data indicate that [3H]-SQ 29,548 binding to soluble human platelet TP receptors was specific, saturable, and reversible.  相似文献   

10.
A simple procedure is presented for the enzymatic preparation of [2-3H]mannose 6-phosphate (Man 6-P) with purified yeast hexokinase and unlabeled ATP. The enzymatically synthesized [2-3H]Man 6-P is utilized as the radiolabeled substrate in a new rapid assay for glucose 6-phosphate (Glc 6-P) phosphatase. The principle of the assay procedure is that the unreacted substrate, [2-3H]Man 6-P, is retained by the anion-exchange resin, AG 1-X8 (acetate), while the enzymatic product, [2-3H]-mannose, is eluted directly into a scintillation counting vial. When Glc 6-P phosphatase activity associated with mouse liver endoplasmic reticulum (ER) vesicles is assayed by the new chromatographic assay, the same characteristic latency and properties are observed, as determined by the commonly used colorimetric assay of inorganic phosphate produced. The anion-exchange radioassay described should be useful for a variety of topological studies on enzymes associated with membrane vesicles derived from liver and kidney ER.  相似文献   

11.
15-Deoxy-Delta12,14-prostaglandin J2 (15d-Delta12,14-PGJ2) is an endogenous ligand for a nuclear peroxysome proliferator activated receptor-gamma (PPAR). We found novel binding sites of 15d-Delta12,14-PGJ2 in the neuronal plasma membranes of the cerebral cortex. The binding sites of [3H]15d-Delta12,14-PGJ2 were displaced by 15d-Delta12,14-PGJ2 with a half-maximal concentration of 1.6 microM. PGD2 and its metabolites also inhibited the binding of [3H]15d-Delta12,14-PGJ2. Affinities for the novel binding sites were 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. Other eicosanoids and PPAR agonists did not alter the binding of [3H]15d-Delta12,14-PGJ2. In primary cultures of rat cortical neurons, we examined the pathophysiologic roles of the novel binding sites. 15d-Delta12,14-PGJ2 triggered neuronal cell death in a concentration-dependent manner, with a half-maximal concentration of 1.1 microM. The neurotoxic potency of PGD2 and its metabolites was also 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. The morphologic and ultrastructural characteristics of 15d-Delta12,14-PGJ2-induced neuronal cell death were apoptotic, as evidenced by condensed chromatin and fragmented DNA. On the other hand, we detected little neurotoxicity of other eicosanoids and PPAR agonists. In conclusion, we demonstrated that novel binding sites of 15d-Delta12,14-PGJ2 exist in the plasma membrane. The present study suggests that the novel binding sites might be involved in 15d-Delta12,14-PGJ2-induced neuronal apoptosis.  相似文献   

12.
Chemical and enzymatic syntheses of [5'-3H]adenosine, [5'-3H]guanosine, and [5'-3H]uridine have been developed. The reduction of beta-D-ribo-pentadialdo-1,4-furanosyl derivatives of corresponding bases is used in the chemical synthesis. The maximum molar activity of the labelled products was 220 TBk/mol in reactions with [3H]NaBH4 and 370-740 TBk/mol in reactions with gaseous tritium. The enzymatic synthesis was performed by the rebosylation of heterocyclic bases with nucleoside phosphorylase and [5'-3H]uridine as a ribosyl donor. Nucleoside phosphorylase is proposed to be used in the immobilized form to avoid the decrease of molar activity. Nucleosides labelled with tritium both in ribosyl and heterocyclic moieties were synthesised enzymatically.  相似文献   

13.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

14.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

15.
Bovine thyroid microsomes are able to phosphorylate exogenous [1-3H]dolichol as well as endogenous dolichol. The properties and specificity of the dolichol kinase activity have been studied by following the phosphorylation of [1-3H]dolichol to [1-3H]DMP as well as the formation of [32P]DMP from endogenous dolichol and [gamma-32P]CTP. The dolichol kinase activity was not linear with respect to time and exhibited a neutral pH-optimum. Product formation was directly proportional to microsomal protein concentration up to 2.5 mg protein/incubation. The enzyme was found to depend on divalent cations for activity: Mg2+-ions being much more effective than Ca2+- and Mn2+-ions. In accordance, EDTA was strongly inhibitory. The enzyme exhibited specificity for CTP as phosphoryl donor and was found to be inhibited by the reaction product CDP. The apparent Km-value for exogenous dolichol amounted to 4 microM. Those for CTP were estimated to be 3.88 and 10.75 mM with exogenous [1-3H]dolichol depending on the source of CTP. With endogenous dolichol Km-values for CTP of 27.8 and 6.1 microM were calculated in respectively the absence and presence of 5 mM VO4(3-). Triton X-100 (0.15%) was necessary in the [1-3H]dolichol kinase assay (only 3% of enzymatic activity in the absence of detergent), while with [gamma-32P]CTP dolichol kinase detergent was only of minor influence (30% stimulation at 0.02% Triton X-100). The levels of the enzymatic activity could be doubled by the inclusion of 18-21 mM NaF [( 1-3H]dolichol kinase) as phosphatase inhibitor: VO4(3-) had practically no effect. In contrast with [gamma-32P]CTP dolichol kinase, the enzymatic activity could be enhanced 4-fold by addition of 5 mM VO4(3-) while F- resulted into no appreciable effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The stereospecifically labeled coenzymes [4R-2H]NADH, [4R-2H]NADPH and [4S-2H]NAD(P)H were synthesized enzymatically in high yield and high isotopic purity (greater than or equal to 95%) with 2HCOO2H/formate dehydrogenase, (CH3)2C2HOH/alchol dehydrogenase from Thermoanaerobium brockii and [1-2H]glucose/glucose dehydrogenase, respectively. This set of deuterated coenzymes was used to determine the stereospecificity of the previously unstudied 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli (NAD-dependent) and 12 alpha-hydroxysteroid dehydrogenase from Clostridium group P (NADP-dependent). H-NMR and EI-MS of the nicotinamide moiety after enzymatic oxidation of deuterated NAD(P)H with dehydrocholic acid as substrate showed that both dehydrogenases are B-sterospecific.  相似文献   

17.
Prostaglandins inhibit the proliferation of the murine P815 mastocytoma. The mechanism of this antitumour activity remains undefined. In several cell systems, the action of PGs is inhibited at the cell surface receptor by pertussis toxin likely through regulatory G proteins involved in the inhibition of adenyl cyclase or activation of phospholipase C. We therefore determined the effect of prostaglandins on the biochemical consequences of activation of these pathways; i.e. concentrations of cyclic AMP (cAMP) and cytosolic free Ca+2 concentrations [( Ca/2]i) respectively. PGD2 (6 ug/mL), PGE1 (10 ug/mL) and PGB1 (50 ug/mL) maximally inhibited (3H)-thymidine incorporation to DNA. PGF2 alpha did not affect DNA synthesis. PGE1 (10 ug/mL) induced a three fold increase in cAMP concentrations. In contrast, the other prostaglandins did not alter cAMP concentrations. Maximal growth inhibitory doses of PGD2, PGE1 and PGB1 decrease [Ca+2]i, as measured by the fluorescence of Indo-1, from 320 +/- 5 nM to 172 +/- 20 nM, 161 +/- 12 nM, and 151 +/- 18 nM respectively. PGF2 alpha did not alter [Ca+2]i. Therefore, in contrast to the effects on cAMP, the decrease in [Ca+2]i was concordant with the inhibition of DNA synthesis. This suggests that PGs may inhibit proliferation through decreasing [Ca+2]i in the P815 mastocytoma.  相似文献   

18.
Purified bovine myometrial plasma membranes were used to characterize prostaglandin (PG) E2 binding. Two binding sites were found: a high-affinity site with a dissociation constant (KD) of 0.27 +/- 0.08 nM and maximum binding (Bmax) of 102.46 +/- 8.6 fmol/mg membrane protein, and a lower affinity site with a KD = 6.13 +/- 0.50 nM and Bmax = 467.93 +/- 51.63 fmol/mg membrane protein. Membrane characterization demonstrated that [3H]PGE2 binding was localized in the plasma membrane. In binding competition experiments, unlabelled PGE1 displaced [3H]PGE2 from its receptor at the same concentrations as did PGE2. Neither PGF2 alpha nor PGD2 effectively competed for [3H]PGE2 binding. Adenylyl cyclase activity was inhibited at concentrations of PGE2 that occupy the high-affinity receptor. These data demonstrate that two receptor sites, or states of binding within a single receptor, are present for PGE2 in purified myometrial membranes. PGE2 inhibition of adenylyl cyclase activity support the view that cAMP has a physiological role in the regulation of myometrial contractility by PGE2.  相似文献   

19.
We examined the effect of prostaglandin (PG) F2 alpha on phosphoinositide (PI) hydrolysis in rat cultured astrocytes. PGF2 alpha stimulated the formation of [3H]inositol phosphates in [3H]inositol-labeled astrocytes with the ED50 value of 23 nM, whereas PGD2 and PGE2 were much less effective than PGF2 alpha. Transformation of astrocytes was accompanied by an increase in the stimulatory response of PGF2 alpha. Pretreatment of the astrocytes with pertussis toxin and cholera toxin did not affect the PGF2 alpha-evoked PI hydrolysis. In the digitonin-permeabilized astrocytes, PGF2 alpha significantly enhanced the GTP gamma S-evoked PI hydrolysis in the presence of Ca2+. These results indicate that rat cultured astrocytes possess PGF2 alpha receptors coupled to phospholipase C.  相似文献   

20.
The effect of PGE2 and PGD2 on several lymphocyte functions in vitro was evaluated in nonatopic and atopic subjects. Both PGE2 and PGD2 inhibited phytohemagglutinin-induced protein synthesis ([3H] leucine uptake) by nonatopic mononuclear cells and T cells in a dose-dependent manner (10(-6) to 10(-12) M). Protein synthesis by atopic mononuclear cells was not significantly suppressed by the above concentration of PGE2. Although PGD2 effectively suppressed protein synthesis by atopic mononuclear cells and T cells at 10(-6) M, lower concentrations were ineffective. Kinetic studies revealed significant differences in the suppressive effects of PGE2 and PGD2 on atopic and nonatopic mononuclear cells at 24 and 48 h, but not at 72 or 96 hr. Protein synthesis by T helper-enriched populations (suppressor cell depletion by anti-Leu-2b + complement) obtained from nonatopics was significantly reduced by PGE2 and PGD2, suggesting that these mediators may be directly inhibiting the responding population. By contrast, protein synthesis by T suppressor-enriched populations (helper cell depletion by OKT4 + complement) obtained from nonatopics was enhanced by PGE2 and PGD2, suggesting that the PG were activating these cells. Atopic T helper and T suppressor cells exhibited decreased responsiveness to PGE2 and PGD2 compared with nonatopic cells. PGE2 and PGD2 inhibited the phytohemagglutinin-stimulated proliferative response ([3H]thymidine uptake) by both atopic and nonatopic mononuclear cells in a dose-dependent manner and to the same extent. However, although PGE2 and PGD2 generated functional suppressor activity (when using a coculture technique) in nonatopic mononuclear cells, these mediators failed to activate atopic suppressor cells. These results suggest that reduced responses by atopic T cells to signals provided by PGE2 and PGD2 are not solely restricted to suppressor cell function, and could indicate an impaired ability to regulate immune and/or inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号