首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Q  Rubenstein JN  Liu VC  Park I  Jang T  Lee C 《Life sciences》2005,76(10):1159-1166
The murine renal cell carcinoma (Renca) cells are insensitive to TGF-beta due to a lack of TGF-beta type II receptor (TbetaR-II). The objective of the present study is to determine the mechanism of this loss of sensitivity to TGF-beta in Renca cells. Renca cells were cultured and treated with 5-Aza-2'-Deoxycytidine (5-Aza), a specific inhibitor of methylation. Expression of TGF-beta type I receptor (TbetaRI) and TbetaRII was determined by RT-PCR and Western blot analysis before and after the treatment of Renca cells with 5-Aza. The expression of phosphorylated Smad2 (P-Smad2) was determined by Western blot analysis. TGF-beta levels in the conditioned medium were measured by ELISA. Renca cells did not express TbetaR-II prior to 5-Aza treatment. After 5-Aza treatment, these cells expressed TbetaR-II at both mRNA and protein levels, which corresponded to the restoration of sensitivity to TGF-beta by an increase in P-Smad2. Levels of TGF-beta1 were similar before and after 5-Aza treatment. Results of the present study indicated that, in Renca cells, the loss of sensitivity to TGF-beta is likely due to a promoter hypermethylation in the TbetaR-II gene.  相似文献   

2.
3.
4.
Transforming growth factor-beta (TGF-beta) binds to and signals via two serine-threonine kinase receptors, the type I (TbetaRI) and type II (TbetaRII) receptors. We have used different and complementary techniques to study the physical nature and ligand dependence of the complex formed by TbetaRI and TbetaRII. Velocity centrifugation of endogenous receptors suggests that ligand-bound TbetaRI and TbetaRII form a heteromeric complex that is most likely a heterotetramer. Antibody-mediated immunofluorescence co-patching of epitope-tagged receptors provides the first evidence in live cells that TbetaRI. TbetaRII complex formation occurs at a low but measurable degree in the absence of ligand, increasing significantly after TGF-beta binding. In addition, we demonstrate that pretreatment of cells with dithiothreitol, which inhibits the binding of TGF-beta to TbetaRI, does not prevent formation of the TbetaRI.TbetaRII complex, but increases its sensitivity to detergent and prevents TGF-beta-activated TbetaRI from phosphorylating Smad3 in vitro. This indicates that either a specific conformation of the TbetaRI. TbetaRII complex, disrupted by dithiothreitol, or direct binding of TGF-beta to TbetaRI is required for signaling.  相似文献   

5.
TGF-beta receptors (TbetaRs) are serine/threonine kinase receptors that bind to TGF-beta and propagate intracellular signaling through Smad proteins. TbetaRs are repressed in some human cancers and expressed at high levels in several fibrotic diseases. We demonstrated that epidermal growth factor (EGF) up-regulates type II TGF-beta receptor (TbetaRII) expression in human dermal fibroblasts. EGF-mediated induction of TbetaRII expression was inhibited by the treatment of fibroblasts with a specific p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, whereas MEK inhibitor PD98059 did not block the up-regulation of TbetaRII by EGF. EGF induced the TbetaRII promoter activity, and this induction was significantly blocked by SB203580, but not by PD98059. The overexpression of the dominant negative form of p38alpha or p38beta significantly reduced the induction of TbetaRII promoter activity by EGF. These results indicate that the EGF-mediated induction of TbetaRII expression involves the p38 MAPK signaling pathway. The EGF-mediated induction of TbetaRII expression may participate in a synergistic interplay between EGF and TGF-beta signaling pathway.  相似文献   

6.
In many cancers, inactivating mutations in both alleles of the transforming growth factor beta (TGF-beta) type 11 receptor (TbetaRII) gene occur and correlate with loss of sensitivity to TGF-beta. Here we describe a novel mechanism for loss of sensitivity to growth inhibition by TGF-beta in tumor development. Mac-1 cells, isolated from the blood of a patient with an indolent form of cutaneous T-cell lymphoma, express wild-type TbetaRII and are sensitive to TGF-beta. Mac-2A cells, clonally related to Mac-1 and isolated from a skin nodule of the same patient at a later, clinically aggressive stage of lymphoma, are resistant to TGF-beta. They express both the wild-type TbetaRII and a receptor with a single point mutation (Asp-404-Gly [D404G]) in the kinase domain (D404G-->TbetaRII); no TbetaRI or TbetaRII is found on the plasma membrane, suggesting that D404G-TbetaRII dominantly inhibits the function of the wild-type receptor by inhibiting its appearance on the plasma membrane. Indeed, inducible expression, under control of a tetracycline-regulated promoter, of D404G-TbetaRII in TGF-beta- sensitive Mac-1 cells as well as in Hep3B hepatoma cells results in resistance to TGF-beta and disappearance of cell surface TbetaRI and TbetaRII. Overexpression of wild-type TbetaRII in Mac-2A cells restores cell surface TbetaRI and TbetaRH and sensitivity to TGF-beta. The ability of the D404G-TbetaRH to dominantly inhibit function of wild-type TGF-beta receptors represents a new mechanism for loss of sensitivity to the growth-inhibitory functions of TGF-beta in tumor development.  相似文献   

7.
Endoglin is an auxiliary component of the transforming growth factor-beta (TGF-beta) receptor system, able to associate with the signaling receptor types I (TbetaRI) and II (TbetaRII) in the presence of ligand and to modulate the cellular responses to TGF-beta1. Endoglin cannot bind ligand on its own but requires the presence of the signaling receptors, supporting a critical role for the interaction between endoglin and TbetaRI or TbetaRII. This study shows that full-length endoglin interacts with both TbetaRI and TbetaRII, independently of their kinase activation state or the presence of exogenous TGF-beta1. Truncated constructs encoding either the extracellular or the cytoplasmic domains of endoglin demonstrated that the association with the signaling receptors occurs through both extracellular and cytoplasmic domains. However, a more specific mapping revealed that the endoglin/TbetaRI interaction was different from that of endoglin/TbetaRII. TbetaRII interacts with the amino acid region 437-558 of the extracellular domain of endoglin, whereas TbetaRI interacts not only with the region 437-558 but also with the protein region located between amino acid 437 and the N terminus. Both TbetaRI and TbetaRII interact with the cytoplasmic domain of endoglin, but TbetaRI only interacts when the kinase domain is inactive, whereas TbetaRII remains associated in its active and inactive forms. Upon association, TbetaRI and TbetaRII phosphorylate the endoglin cytoplasmic domain, and then TbetaRI, but not TbetaRII, kinase dissociates from the complex. Conversely, endoglin expression results in an altered phosphorylation state of TbetaRII, TbetaRI, and downstream Smad proteins as well as a modulation of TGF-beta signaling, as measured by the reporter gene expression. These results suggest that by interacting through its extracellular and cytoplasmic domains with the signaling receptors, endoglin might affect TGF-beta responses.  相似文献   

8.
K Luo  H F Lodish 《The EMBO journal》1996,15(17):4485-4496
Transforming growth factor-beta (TGF-beta) affects multiple cellular functions through the type I and type II receptor Ser/Thr kinases (TbetaRI and TbetaRII). Analysis of TGF-beta signaling pathways has been hampered by the lack of cell lines in which both TbetaRI and TbetaRII are deleted, and by the inability to study signal transduction by TbetaRI independently of TbetaRII since TbetaRI does not bind TGF-beta directly. To overcome these problems, we constructed and expressed chimeric receptors with the extracellular domain of the erythropoietin receptor (EpoR) and the cytoplasmic domains of TbetaRI or TbetaRII. When expressed in Ba/F3 cells, which do not express EpoR, Epo induces the formation of a heteromeric complex between cell surface EpoR-TbetaRI and EpoR-TbetaRII chimeras. Neither the EpoR-TbetaRI nor the EpoR-TbetaRII chimera interacts with endogenous TGF-beta receptors. Ba/F3 cells expressing both EpoR-TbetaRI and EpoR-TbetaRII chimeras, but not EpoR-TbetaRI or EpoR-TbetaRII alone, undergo Epo-induced growth arrest. When expressed in Ba/F3 cells in the absence of the EpoR-TbetaRII chimera, EpoR-TbetaRI(T204D), a chimeric receptor with a point mutation in the GS domain of TbetaRI that is autophosphorylated constitutively, triggers growth inhibition in response to Epo. Thus, both homo- and heterodimerization of the cytoplasmic domain of the type I TGF-beta receptor are required for intracellular signal transduction leading to inhibition of cell proliferation. These chimeric receptors provide a unique system to study the function and signal transduction of individual TGF-beta receptor subunits independently of endogenous TGF-beta receptors.  相似文献   

9.
As a source of transforming growth factor beta1 (TGF-beta1), mast cells have been implicated as potential effector cells in many pathological processes. However, the mechanisms by which mast cells express, secrete, and activate TGF-beta1 have remained vague. We show here by means of RT-PCR, immunoblotting, and immunocytochemistry that isolated rat peritoneal mast cells synthesize and store large latent TGF-beta1 in their chymase 1-containing secretory granules. Mast cell stimulation and degranulation results in rapid secretion of the latent TGF-beta1, which is converted by chymase 1 into an active form recognized by the type II TGF-beta serine/threonine kinase receptor (TbetaRII). Thus, mast cells secrete active TGF-beta1 by a unique secretory mechanism in which latent TGF-beta1 and the activating enzyme chymase 1 are coreleased. The activation of latent TGF-beta1 specifically by chymase was verified using recombinant human latent TGF-beta1 and recombinant human chymase. In isolated TbetaRI- and TbetaRII-expressing peritoneal macrophages, the activated TGF-beta1 induces the expression of the plasminogen activator inhibitor 1 (PAI-1), whereas in the mast cells, the levels of TbetaRI, TbetaRII, and PAI-1 expression were below detection. Selective stimulation of mast cells in vivo in the rat peritoneal cavity leads to rapid overexpression of TGF-beta1 in peritoneal mast cells and of TbetaRs in peritoneal macrophages. These data strongly suggest that mast cells can act as potent paracrine effector cells both by secreting active TGF-beta1 and by enhancing its response in target cells.  相似文献   

10.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

11.
Vascular endothelial cells undergo albumin endocytosis using a set of albumin binding proteins. This process is important for maintaining cellular homeostasis. We showed by several criteria that the previously described 73-kDa endothelial cell surface albumin binding protein is the 75-kDa transforming growth factor (TGF)-beta receptor type II (TbetaRII). Albumin coimmunoprecipitated with TbetaRII from a membrane fraction from rat lung microvascular endothelial cells. Albumin endocytosis-negative COS-7 cells became albumin endocytosis competent when transfected with wild-type TbetaRII but not when transfected with a domain-negative kinase mutant of TbetaRII. An antibody specific for TbetaRII inhibited albumin endocytosis. A mink lung epithelial cell line, which expresses both the TGF-beta receptor type I (TbetaRI) and the TbetaRII receptor, exhibited albumin binding to the cell surface and endocytosis. In contrast, mutant L-17 and DR-26 cells lacking TbetaRI or TbetaRII, respectively, each showed a dramatic reduction in binding and endocytosis. Albumin endocytosis induced Smad2 phosphorylation and Smad4 translocation as well as increased protein expression of the inhibitory Smad, Smad7. We identified regions of significant homology between amino acid sequences of albumin and TGF-beta, suggesting a structural basis for the interaction of albumin with the TGF-beta receptors and subsequent activation of TbetaRII signaling. The observed albumin-induced internalization of TbetaRII signaling may be an important mechanism in the vessel wall for controlling TGF-beta responses in endothelial cells.  相似文献   

12.
13.
14.
Transforming growth factor-beta (TGF-beta) is a potent growth suppressor. Acquisition of TGF-beta resistance has been reported in many tumors, and has been associated with reduced TGF-beta receptor expression. In this study, we examined TGF-beta 1, TGF-beta type I receptor (TbetaRI) and TGF-beta type II receptor (TbetaRII) expression in SW-13 adrenocortical carcinoma cells by Northern and Western blot analysis. SW-13 cells did not express TbetaRII mRNA or protein. We have investigated the role of TbetaRII in modulating tumorigenic potential using stably transfected SW-13 cells with TbetaRII expression plasmid. TbetaRII-positive SW-13 cell growth was inhibited by exogenous human TGF-beta1 (hTGF-beta1) in a dose-dependent manner. In contrast, SW-13 cells and control clones transfected with empty vector remained hTGF-beta1-insensitive. Xenograft examination in athymic nude mice demonstrated that TbetaRII-positive SW-13 cells reduced tumor-forming activity. Reconstructing the TbetaRII can lead to reversion of the malignant phenotype of TbetaRII-negative human adrenocortical carcinoma, which contains SW-13 cells. Reduced TbetaRII expression may play a critical role in determining the malignant phenotype of human adrenocortical carcinoma.  相似文献   

15.
16.
17.
18.
19.
Galectins (gal), a family of soluble beta-galactoside-binding proteins present at the cell surface, are involved in cancer progression and metastasis. Here we investigated the expression of several galectins in normal (PrEC), benign (BPH-1), and malignant (LNCaP) prostate epithelial cells and found that all galectins, except gal1 are differentially expressed. The gal3, 7, and 9 are highly expressed in PrEC, but not in LNCaP cells. Out of seven isoforms of gal8, the proto isoform gal8e and our newly discovered proto isoform gal8g were upregulated in LNCaP cells compared to PrEC, whereas the two tandem-repeat isoforms gal8a and gal8b were equally expressed in these cells. To determine if the silencing of gal3 in LNCaP cells was due to promoter methylation, LNCaP cells were treated with azacytidine. Azacytidine treatment induced the expression of gal3 in LNCaP cells, indicating that the gal3 gene was silenced by methylation of its promoter. To examine further, we evaluated cytosine methylation in gal3 promoter in LNCaP, normal prostate and placenta DNA and observed that it is highly methylated in LNCaP but not in normal cells and azacytidine completely abolished this methylation in LNCaP cells. Similar to prostate cancer cells, gal3 promoter was highly methylated in human prostate cancer tissue but not in normal tissue. To our knowledge, this is the first report indicating that gal3 expression is regulated by promoter methylation in LNCaP cells and prostate tumors. The methylation of gal3 promoter may constitute a powerful tool for early diagnosis of prostate cancer.  相似文献   

20.
Deleted in liver cancer (DLC1), a tumor suppressor gene in multiple cancers, is recurrently down regulated or inactivated by epigenetic mechanisms in primary prostate carcinomas (PCAs). In this study the methylation and acetylation profile of the DLC1 promoter region was examined in three PCA cell lines with low or undetectable DLC1 expression: LNCaP, its derivative C4-2B-2, and 22Rv1. Two histone deacetylase inhibitors (HDAC), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) induced histone acetylation of the DLC1 promoter in all three lines. DLC1 promoter methylation and deacetylation were detected in LNCaP and C4-2B-2 cells while in 22Rv1 cells DLC1 is silenced by deacetylation. Treatment with SAHA or TSA efficiently increased DLC1 expression in all lines, particularly in 22Rv1 cells, and activated the DLC1 promoter through the same Sp1 sites. The 22Rv1 cell line was selected to evaluate the efficacy of combined DLC1 transduction and SAHA treatment on tumor growth in athymic mice. Individually, DLC1 transduction and SAHA exposure reduced the tumor size by 75-80% compared to controls and in combination almost completely inhibited tumor growth. The antitumor effect was associated with the induction of apoptosis and inhibition of RhoA activity. SAHA alone significantly reduced RhoA activity, showing that this RhoGTPase is a target for SAHA. These results, obtained with a reliable preclinical in vivo test, predict that combined therapeutic agents targeting the pathways governing DLC1 function and HDAC inhibitors may be beneficial in management of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号