首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focuses on the technological advancements, challenges and trends in immunoassay technologies for ovarian cancer diagnosis. Emphasis is placed on the principles of the technologies, their merits and limitations and on the evolution from laboratory-based methods to point-of-care devices. While the current market is predominantly associated with clinical immunoassay kits, over the last decade a major thrust in development of immunosensors is evident due to their potential in point-of-care devices. Technological advancements in immunosensors, extending from labeled to label-free detection, with and without mediators, for enhancing proficiencies and reliability have been dealt with in detail. Aspects of the utilisation of nanomaterials and immobilization strategies for enhancing sensitivity and altering the detection range have also been addressed. Finally, we have discussed some distinct characteristics and limitations associated with the recently commericalised technologies used for quantitation of relevant ovarian cancer markers.  相似文献   

2.
The engineering of human tissue represents a major paradigm shift in clinical medicine. Early embodiments of tissue engineering are currently being taken forward to the clinic by production methods that are essentially extensions of laboratory manual procedures. However, to achieve the status of routine large-scale clinical practice, automation and scale-out processes are required. This in turn will require the development of reliable on-line monitoring and control systems. This paper examines one demand of crucial importance, namely the real time in vitro monitoring of the flow characteristics through growing tissue since this has a complex interrelationship. Doppler optical coherence tomography (DOCT) is a recently developed imaging technique for studying the rheological properties of tissues in vivo. Capable of non-invasive imaging in real time with high resolution, it is potentially ideal for the continuous monitoring of engineered tissues in vitro. As a base line, the current status of DOCT in vivo is therefore reviewed. This paper also reports the first preliminary use of DOCT in tissue engineering. The application described involves the imaging of a fully developed laminar flow through a combined tissue fabrication/bioreactor with a tissue-engineered construct (substitute blood vessel) in situ.  相似文献   

3.
Magnetic resonance (MR) imaging is the most promising new technology to appear in the clinical imaging arena since the advent of x-ray transmission computed tomography in the early 1970s. Five independent tissue characteristics (spin density, spin-lattice and spin-spin relaxation times, flow and spectral shift information) are accessible to MR imaging, and their relative influence in the magnetic resonance image can be varied by appropriate selection of pulse sequences and pulse times. All major organ systems appear to be amenable to MR imaging, and some are revealed with superior definition compared with their appearance in images obtained by alternate imaging technologies. Of particular interest is the superior contrast resolution in MR images of the brain and spinal cord, and the absence of bone- and motion-induced artifacts in images of the abdomen and pelvis. Applications of MR imaging to the heart and great vessels are just developing, as are new types of contrast agents for use in MR imaging. In vivo chemical spectroscopic measurements by magnetic resonance are heralded by some investigators as the most significant contribution that magnetic resonance will make ultimately to clinical diagnosis.At present, the number of MR imaging units is extremely low, and clinical studies are proceeding at a slow rate. Nevertheless, it is possible to provide a preliminary evaluation of the usefulness of MR imaging in a variety of clinical applications. This article is such an evaluation, tempered by the acknowledgement that much additional work remains to be done.  相似文献   

4.
Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.  相似文献   

5.
Orthogonal polarization spectral (OPS) imaging is a new clinical technique for observation of the microcirculation of organ surfaces. For validation purposes, we compared OPS images of the nailfold skin with those obtained from conventional capillary microscopy at rest and during venous occlusion in 10 male volunteers. These images were computer analyzed to provide red blood cell velocity and capillary diameters of the same nailfold capillaries at rest and during venous occlusion. Results showed that OPS images provided similar values for red blood cell velocity and capillary diameter as those obtained from capillary microscopy images. OPS imaging, however, provided significantly better image quality, as shown by comparison of image contrast between OPS imaging and capillary microscopy. This made image analysis better and easier to perform. It is anticipated, therefore, that OPS imaging will become a new and powerful technique in the study of the human microcirculation in vivo because it can be used on human internal organs.  相似文献   

6.
A comprehensive understanding of host–pathogen interactions requires quantitative assessment of molecular events across a wide range of spatiotemporal scales and organizational complexities. Due to recent technical developments, this is currently only achievable with microscopy. This article is providing a general perspective on the importance of microscopy in infectious disease research, with a focus on new imaging modalities that promise to have a major impact in biomedical research in the years to come. Every major technological breakthrough in light microscopy depends on, and is supported by, advancements in computing and information technologies. Bioimage acquisition and analysis based on machine learning will pave the way toward more robust, automated and objective implementation of new imaging modalities and in biomedical research in general. The combination of novel imaging technologies with machine learning and near-physiological model systems promises to accelerate discoveries and breakthroughs in our understanding of infectious diseases, from basic research all the way to clinical applications.  相似文献   

7.
High-field magnetic resonance techniques for brain research   总被引:4,自引:0,他引:4  
High-field magnetic resonance imaging scanners with a static magnetic field of 3 Tesla or higher are becoming ubiquitous in clinical and basic neurosciences. Given the high cost and complexity of operation, it is important to ask whether or not and how the use of high-field magnets can be beneficial for the neurosciences. What new questions can be addressed? Which new insights can we expect from these new tools? In addition, what are the limitations of these new techniques? This review discusses the three most important applications of the high-field magnetic resonance techniques for the neuroscience community: first, functional magnetic resonance imaging, second, in vivo spectroscopy, and third, in vivo fiber tracking on the basis of diffusion tensor imaging.  相似文献   

8.
Pathology has recently entered the era of personalized medicine. This brings new expectations for the accuracy and precision of tissue-based diagnosis, in particular, when quantification of histologic features and biomarker expression is required. While for many years traditional pathologic diagnosis has been regarded as ground truth, this concept is no longer sufficient in contemporary tissue-based biomarker research and clinical use. Another major change in pathology is brought by the advancement of virtual microscopy technology enabling digitization of microscopy slides and presenting new opportunities for digital image analysis. Computerized vision provides an immediate benefit of increased capacity (automation) and precision (reproducibility), but not necessarily the accuracy of the analysis. To achieve the benefit of accuracy, pathologists will have to assume an obligation of validation and quality assurance of the image analysis algorithms. Reference values are needed to measure and control the accuracy. Although pathologists' consensus values are commonly used to validate these tools, we argue that the ground truth can be best achieved by stereology methods, estimating the same variable as an algorithm is intended to do. Proper adoption of the new technology will require a new quantitative mentality in pathology. In order to see a complete and sharp picture of a disease, pathologists will need to learn to use both their analogue and digital eyes.  相似文献   

9.

Background

Each year more than 10 million people worldwide are burned severely enough to require medical attention, with clinical outcomes noticeably worse in resource poor settings. Expert clinical advice on acute injuries can play a determinant role and there is a need for novel approaches that allow for timely access to advice. We developed an interactive mobile phone application that enables transfer of both patient data and pictures of a wound from the point-of-care to a remote burns expert who, in turn, provides advice back.

Methods and Results

The application is an integrated clinical decision support system that includes a mobile phone application and server software running in a cloud environment. The client application is installed on a smartphone and structured patient data and photographs can be captured in a protocol driven manner. The user can indicate the specific injured body surface(s) through a touchscreen interface and an integrated calculator estimates the total body surface area that the burn injury affects. Predefined standardised care advice including total fluid requirement is provided immediately by the software and the case data are relayed to a cloud server. A text message is automatically sent to a burn expert on call who then can access the cloud server with the smartphone app or a web browser, review the case and pictures, and respond with both structured and personalized advice to the health care professional at the point-of-care.

Conclusions

In this article, we present the design of the smartphone and the server application alongside the type of structured patient data collected together with the pictures taken at point-of-care. We report on how the application will be introduced at point-of-care and how its clinical impact will be evaluated prior to roll out. Challenges, strengths and limitations of the system are identified that may help materialising or hinder the expected outcome to provide a solution for remote consultation on burns that can be integrated into routine acute clinical care and thereby promote equity in injury emergency care, a growing public health burden.  相似文献   

10.
Tumor necrosis factor signaling   总被引:4,自引:0,他引:4  
  相似文献   

11.
Various techniques have been developed and used to investigate how proteins produce complex biological architectures and phenomena. Among these techniques, high-speed atomic force microscopy (HS-AFM) holds a unique position. It is only HS-AFM that allows the simultaneous assessment of structure and dynamics of single protein molecules in action. This new microscopy tool has been successfully applied to a variety of proteins, from motor proteins to membrane proteins, antibodies, enzymes, and even to intrinsically disordered proteins. And yet there still remain many biomolecular phenomena that cannot be addressed by HS-AFM in its current form. Here, I present a brief history of HS-AFM development, describe the current state of HS-AFM, and then discuss which new biological scanning probe microscopy techniques will be coming up next.  相似文献   

12.
The metastatic invasion of cancer cells from the primary lesion into the adjacent stroma is a key step in cancer progression, and is associated with poor outcome. The principles of cancer invasion have been experimentally addressed in various in vitro models; however, key steps and mechanisms in vivo remain unclear. Here, we establish a modified skin-fold chamber model for orthotopic implantation, growth and invasion of human HT-1080 fibrosarcoma cells, dynamically reconstructed by epifluorescence and multiphoton microscopy. This strategy allows repeated imaging of tumor growth, tumor-induced angiogenesis and invasion, as either individual cells, or collective strands and cell masses that move along collagen-rich extracellular matrix and coopt host tissue including striated muscle strands and lymph vessels. This modified window model will be suited to address mechanisms of cancer invasion and metastasis, and related experimental therapy.  相似文献   

13.
Thyroid autoimmune disorders comprise more than 30% of all organ-specific autoimmune diseases and are characterized by autoantibodies and infiltrating T cells. The pathologic role of infiltrating T cells is not well defined. To address this issue, we generated transgenic mice expressing a human T-cell receptor derived from the thyroid-infiltrating T cell of a patient with thyroiditis and specific for a cryptic thyroid-peroxidase epitope. Here we show that mouse major histocompatibility complex molecules sustain selection and activation of the transgenic T cells, as coexpression of histocompatibility leukocyte antigen molecules was not needed. Furthermore, the transgenic T cells had an activated phenotype in vivo, and mice spontaneously developed destructive thyroiditis with histological, clinical and hormonal signs comparable with human autoimmune hypothyroidism. These results highlight the pathogenic role of human T cells specific for cryptic self epitopes. This new 'humanized' model will provide a unique tool to investigate how human pathogenic self-reactive T cells initiate autoimmune diseases and to determine how autoimmunity can be modulated in vivo.  相似文献   

14.
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.  相似文献   

15.
16.
Yeast cells as tools for target-oriented screening   总被引:1,自引:0,他引:1  
  相似文献   

17.
Diseases caused by tropical parasites affect hundreds of millions of people worldwide but have been largely neglected for drug development because they affect poor people in poor regions of the world. Most of the current drugs used to treat these diseases are decades old and have many limitations, including the emergence of drug resistance. This review will summarize efforts to reinvigorate the drug development pipeline for these diseases, which is driven in large part by support from major philanthropies. The organisms responsible for these diseases have a fascinating biology, and many potential biochemical targets are now apparent. These neglected diseases present unique challenges to drug development that are being addressed by new consortia of scientists from academia and industry.  相似文献   

18.
The recent revolution in digital technologies and information processing methods present important opportunities to transform the way optical imaging is performed, particularly toward improving the throughput of microscopes while at the same time reducing their relative cost and complexity. Lensfree computational microscopy is rapidly emerging toward this end, and by discarding lenses and other bulky optical components of conventional imaging systems, and relying on digital computation instead, it can achieve both reflection and transmission mode microscopy over a large field-of-view within compact, cost-effective and mechanically robust architectures. Such high throughput and miniaturized imaging devices can provide a complementary toolset for telemedicine applications and point-of-care diagnostics by facilitating complex and critical tasks such as cytometry and microscopic analysis of e.g., blood smears, Pap tests and tissue samples. In this article, the basics of these lensfree microscopy modalities will be reviewed, and their clinically relevant applications will be discussed.  相似文献   

19.
Parasitic neglected diseases are in dire need of new drugs either to replace old drugs rendered ineffective because of resistance development, to cover clinical needs that had never been addressed or to tackle other associated problems of existing drugs such as high cost, difficult administration, restricted coverage or toxicity. The availability of transgenic parasites expressing reporter genes facilitates the discovery of new drugs through high throughput screenings, but also by allowing rapid screening in animal models of disease. Taking advantage of these, we propose an alternative pathway of drug development for neglected diseases, going from high throughput screening directly into in vivo testing of the top ranked compounds selected by medicinal chemistry. Rapid assessment animal models allow for identification of compounds with bona fide activity in vivo early in the development chain, constituting a solid basis for further development and saving valuable time and resources.  相似文献   

20.
Chemotaxis is the directed movement of a cell towards a gradient of chemicals such as chemokines or growth factors. This phenomenon can be studied in organisms ranging from bacteria to mammalian cells, and here we will focus on eukaryotic amoeboid chemotaxis. Chemotactic responses are mediated by two major classes of receptors: GPCR''s and RTK''s, with multiple pathways signaling downstream of them, certain ones functioning in parallel. In this review we address two important features of amoeboid chemotaxis that will be important for further advances in the field. First, the application of in vivo imaging will be critical for providing insight into the functional requirements for chemotactic responses. We will briefly cover a number of systems in which in vivo imaging is providing new insights. Second, due to the network-type design of signaling pathways of eukaryotic chemotaxis, more refined phenotypic analysis will be necessary, and we will discuss recent analyses of the role of the phosphoinositide 3-kinase pathway in this light. We will close with some speculations regarding future applications of more detailed in vivo analysis and mechanistic understanding of eukaryotic amoeboid chemotaxis.Key Words: chemotaxis, signaling, in vivo models, development, phospholipase, phosphoinositide 3-kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号