首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide T is a non-natural octapeptide of sequence Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr, taken from the sequence of the protein gp120 of HIV. The peptide has been shown to bind competitively to the CD4 receptors of the helper/inducer lymphocytes T. The peptide is presently used for the treatment of AIDS-associated dementia and has been proven useful for the treatment of psoriasis. Using molecular modeling procedures, we studied the conformational profile of this peptide as well as those of several active and inactive analogs. The analysis of these results gave rise to the proposal of a bioactive conformation of the peptide, which can be described as a pseudo -turn structure, involving the last four residues at the C-terminus of the peptide. The secondary structure is stabilized by a hydrogen bond between the hydroxyl hydrogen of the side chain of Thr5 and the carbonyl oxygen of Tyr7. From the bioactive form and different structure–activity relationship studies, a pharmacophore was proposed. This hypothesis was used to search on several 3D data bases. One of the hits obtained was the natural compound amigdalin, which was tested and exhibited moderate activity.  相似文献   

2.
A bioactive peptide mimicking peptide‐signaling molecules has been isolated from the skin extract of fish Channa argus which caused contraction of the apical muscle of a starfish Patiria pectinifera, a deuterostomian invertebrate. The primary structure of the isolated pentapeptide comprises amino acid sequence of H‐Pro‐Ala‐Leu‐Ala‐Leu‐OH (PALAL) with a molecular mass of 483.7 Da. Pharmacological activity of PALAL, dosage ranging from 10?9 to 10?5 M, revealed concentration‐dependent contraction of the apical muscles of P. pectinifera and Asterias amurensis. However, PALAL was not active on the intestinal smooth muscle of the goldfish Carassius auratus and has presumably other physiological roles in fish skin. Investigation of structure‐activity relationship using truncated and substituted analogs of PALAL demonstrated that H‐Ala‐Leu‐Ala‐Leu‐OH was necessary and should be sufficient to constrict apical muscle of P. pectinifera. Furthermore, the second alanine residue was required to display the activity, and the fifth leucine residue was responsible for its potency. Comparison with PALAL's primary structure with those of other known bioactive peptides from fish and starfish revealed that PALAL does not have any significant homology. Consequently, PALAL is a bioactive peptide that elicits a muscle contraction in starfish, and the isolation of PALAL may lead to develop other bioactive peptides sharing its similar sequence and/or activity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
A novel computer modeling approach suitable for the structure analysis of small bioactive peptides has been developed. This approach involves identification of conformational patterns in protein structure data bank based on the sequence homology with the bioactive peptide. The models built on the basis of this homology and having common conformational patterns are analyzed under the structural constraints derived from the activity data of various synthetic analogs of the peptide. Application of this procedure to the gonadotropin releasing hormone (GnRH) resulted in a library of possible structures for GnRH, 9 among which shared a common β-turn. Further analysis of the structures containing the β-turn motif, in the context of the structure–activity data, led to a model for the active conformation of GnRH. The topology of the putative receptor binding site of the hormone is defined by a contiguous surface formed through an appropriate juxtaposition of the N-terminal pGlu1 the guanidyl group of Arg8, aromatic side chain of Trp3, and the Gly10-NH2 at the C-terminal end. ©Wiley-Liss, Inc.  相似文献   

4.
Human MUC1 is over-expressed in human adenocarcinomas and has been used as a target for immunotherapy studies. The 9-mer MUC1-9 peptide has been identified as one of the peptides which binds to murine MHC class I H-2Kb. The structure of MUC1-9 in complex with H-2Kb has been modeled and simulated with classical molecular dynamics, based on the x-ray structure of the SEV9 peptide/H-2Kb complex. Two independent trajectories with the solvated complex (10 ns in length) were produced. Approximately 12 hydrogen bonds were identified during both trajectories to contribute to peptide/MHC complex, as well as 1-2 water mediated hydrogen bonds. Stability of the complex was also confirmed by buried surface area analysis, although the corresponding values were about 20% lower than those of the original x-ray structure. Interestingly, a bulged conformation of the peptide’s central region, partially characterized as a β-turn, was found exposed form the binding groove. In addition, P1 and P9 residues remained bound in the A and F binding pockets, even though there was a suggestion that P9 was more flexible. The complex lacked numerous water mediated hydrogen bonds that were present in the reference peptide x-ray structure. Moreover, local displacements of residues Asp4, Thr5 and Pro9 resulted in loss of some key interactions with the MHC molecule. This might explain the reduced affinity of the MUC1-9 peptide, relatively to SEV9, for the MHC class I H-2Kb.  相似文献   

5.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.  相似文献   

6.
The second transmembrane (TM2) domain of GABAA receptor forms the inner-lining surface of chloride ion-channel and plays important roles in the function of the receptor protein. In this study, we report the first structure of TM2 in lipid bilayers determined using solid-state NMR and MD simulations. The interatomic 13C-15N distances measured from REDOR magic angle spinning experiments on multilamellar vesicles, containing a TM2 peptide site specifically labeled with 13C′ and 15N isotopes, were used to determine the secondary structure of the peptide. The 15N chemical shift and 1H-15N dipolar coupling parameters measured from PISEMA experiments on mechanically aligned phospholipid bilayers, containing a TM2 peptide site specifically labeled with 15N isotopes, under static conditions were used to determine the membrane orientation of the peptide. Our results reveal that the TM2 peptide forms an alpha helical conformation with a tilted transmembrane orientation, which is unstable as a monomer but stable as pentameric oligomers as indicated by MD simulations. Even though the peptide consists of a number of hydrophilic residues, the transmembrane folding of the peptide is stabilized by intermolecular hydrogen bondings between the side chains of Ser and Thr residues as revealed by MD simulations. The results also suggest that peptide-peptide interactions in the tilted transmembrane orientation overcome the hydrophobic mismatch between the peptide and bilayer thickness.  相似文献   

7.
Since its initial discovery in 1982, growth hormone-releasing factor (GRF) has been the subject of intense investigation. This interest was prompted by the potential application of GRF for Stimulating growth in dwarf humans and for performance enhancement in livestock. Substantial research has been focused upon the development of potent, long-acting analogs as therapeutics. Herein is described a summary of the cumulative efforts of various laboratories endeavoring in this quest. The rationale utilized in GRF analog development is discussed: (1) determination of bioactive core. (2) evaluation of secondary structure, and (3) elucidation of degradation pathways (chemical and enzymatic). Using this information, several series of linear (unnatural and natural sequence) and cyclic GRF analogs were designed, synthesized, and evaluated. Stimulated by the constraints of commercial production, innovative, alternative methods of synthesis were explored: solid-phase, solution-phase, enzymatic, and recombinant. To date, the most promising candidate for drug development is [His1, Val2, Gln8, Ala15, Leu27]-hGRF(1-32)-OH. This natural sequence analog, consisting of rodent and human sequences, incorporates the bioactive core, preferred secondary structure, resistance to chemical and enzymatic degradation: with the added benefit of amenability to large-scale recombinant synthesis. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
《Biophysical journal》2022,121(13):2613-2623
Misfolding of TATA-box binding protein-associated factor 15 (TAF15) may cause neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Some mutations of prion-like domain (PrLD) have been detected in patients with sporadic ALS, suggesting the importance of TAF15-PrLD in ALS pathogenesis. Herein, combining experiments and molecular dynamics (MD) simulations, we investigated the influences of several TAF15-PrLD mutations on the amyloid fibril formation of TAF15-PrLD-extracted peptide segments, and identified an essential β-amyloid-forming segment from TAF15-PrLD. A pathogenic mutation T2 E71G resulted in significantly enhanced aggregation of the TAF15-PrLD segment T2 (Y56GQSQSGYSQSYGGYENQ73). In addition, the peptide T2 with a strong β-amyloid-forming tendency was able to induce the liquid to solid phase transition of TAF15-PrLD protein. Further study identified the SGYS motif as a critical segment that promoted the formation of amyloid fibrils, which maintained a stable β-sheet structure through intermolecular hydrogen bonds and π-π stacking interaction. This work provides a clue to elucidate the molecular pathogenic mechanism of TAF15-associated neurodegenerative diseases, and will direct drug development targeting TAF15.  相似文献   

9.
Previously, generation of superoxide anion (O2•-) catalyzed by Cu-binding peptides derived from human prion protein (model sequence for helical Cu-binding motif VNITKQHTVTTTT was most active) in the presence of catecholamines and related aromatic monoamines such as phenylethylamine and tyramine, has been reported [Kawano, T., Int J Biol Sci 2007; 3: 57-63]. The peptide sequence (corresponding to helix 2) tested here is known as threonine-rich neurotoxic peptide. In the present article, the redox behaviors of aromatic monoamines, 20 amino acids and prion-derived tyrosine-rich peptide sequences were compared as putative targets of the oxidative reactions mediated with the threonine-rich prion-peptide. For detection of O2•-, an O2•--specific chemiluminescence probe, Cypridina luciferin analog was used. We found that an aromatic amino acid, tyrosine (structurally similar to tyramine) behaves as one of the best substrates for the O2•- generating reaction (conversion from hydrogen peroxide) catalyzed by Cu-bound prion helical peptide. Data suggested that phenolic moiety is required to be an active substrate while the presence of neither carboxyl group nor amino group was necessarily required. In addition to the action of free tyrosine, effect of two tyrosine-rich peptide sequences YYR and DYEDRYYRENMHR found in human prion corresponding to the tyrosine-rich region was tested as putative substrates for the threonine-rich neurotoxic peptide. YYR motif (found twice in the Y-rich region) showed 2- to 3-fold higher activity compared to free tyrosine. Comparison of Y-rich sequence consisted of 13 amino acids and its Y-to-F substitution mutant sequence revealed that the tyrosine-residues on Y-rich peptide derived from prion may contribute to the higher production of O2•-. These data suggest that the tyrosine residues on prion molecules could be additional targets of the prion-mediated reactions through intra- or inter-molecular interactions. Lastly, possible mechanism of O2•- generation and the impacts of such self-redox events on the conformational changes in prion are discussed.  相似文献   

10.
Pertussis toxoid, an acellular pertussis vaccine prepared by hydrogen peroxide treatment in the presence of Fe3+, has not been well characterized. Because the toxoid has been a part of the DTaP vaccine for infants, it is of interest and significance to have a clear understanding of its structure. The five subunits of pertussis toxin (PT) have a combined molecular weight of approximately 95,000 Da. The peroxide treatment in toxoid formation introduces additional complexity into the protein sequence. To maximize sequence coverage, a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) approach was used to analyze the tryptic digest of toxoid as a whole. An analytical-scale high-performance liquid chromatography (HPLC) instrument using a pentafluorophenyl (PFP) column was used as the first-dimensional LC for fraction collection. The fractions were then analyzed by nanoLC-MS/MS using a C18 column to acquire collision-activated dissociation (CAD) spectra of the tryptic peptides. It is shown that a PFP column has a different peptide retention specificity from a C18 column. A combination of a PFP column and a C18 column is a viable approach for dispersing peptides in a complex mixture. From the structures of 65 peptides that represented approximately 50% of its sequence, PT was found to have sustained heavy oxidative damages during toxoid preparation. Nearly all methionine, cysteine, and (likely) tryptophan residues were oxidized. Evidence of histidine and tyrosine oxidation was also observed. In addition, a large percentage of asparagine was found hydrolyzed to aspartic acid. These findings corrrelate well with the reduction of PT toxicity by peroxide treatment.  相似文献   

11.
Yan H  Wei L  He X  Liu H  Yang S  Lai R  Rao D 《Biochimie》2012,94(8):1718-1723
A novel myotropic peptide, polypedatein, was purified and characterized from the skin secretions of the tree frog, Polypedates pingbianensis. Its primary structure, TLLCKYFAIC, was determined by Edman degradation and mass spectrometry. Polypedatein was subjected to bioassays including myotropic, antimicrobial, and serine protease inhibitory activities, which are related with many amphibian skin bioactive peptides. It was found to elicit concentration-dependent contractile effects on isolated rat ileum. cDNA clones encoding the precursor of polypedatein were isolated by screening a skin cDNA library of P. pingbianensis and then sequenced. The amino acid sequence deduced from the cDNA sequences matches well with the result from Edman degradation. BLAST search revealed that the sequence of polypedatein did not show similarity to known protein or peptide sequences. Especially, polypedatein does not contain conserved structural motifs of other amphibian myotropic peptides, such as bradykinins, bombesins, cholecystokinin (CCK), and tachykinins, indicating that polypedatein belongs to a novel amphibian myotropic peptide family. The signal peptide of the precursor encoding polypedatein shows significant sequence identity to that of other amphibian skin defensive peptides, such as antimicrobial peptides, bradykinins, lectins, and serine protease inhibitors, suggesting that polypedatein belongs to a novel amphibian myotropic peptide family. Polypedatein is also the first bioactive peptide from the genus of the frog, Polypedates.  相似文献   

12.
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic α-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as 15N, 13C and/or 2H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C18 column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the 15N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform 15N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

13.
Chemical synthesis of kurtoxin, a T-type calcium channel blocker   总被引:1,自引:0,他引:1  
Kurtoxin isolated from the venom of scorpion, Parabuthus transvaalicus, is a 63-residue peptide with four intramolecular disulfide bonds which inhibits low-threshold T-type Ca2+channels. Kurtoxin was synthesized by native chemical ligation involving the coupling of (1--26)-thioester peptide and Cys27-(28--63)-peptide. The former was synthesized by standard solid-phase peptide synthesis (SPPS) with Boc chemistry, while the latter was sequentially assembled from three protected segments onto a resin-bound C-terminal segment in a chloroform--phenol mixed solvent followed by deprotection reaction using HF. Each protected segment used for the coupling on a solid support was prepared on an N-[9-(hydroxymethyl)-2-fluorenyl] succinamic acid (HMFS) resin and detached from the resin by treatment with 20% Et 3N in DMF to produce it in the form of an α-carboxylic acid. Synthetic kurtoxin obtained after the oxidative folding reaction was found to be identical with the natural product by means of several analytical procedures, and its disulfide structure was determined for the first time to be Cys12-Cys61, Cys16-Cys37, Cys23-Cys44 and Cys27-Cys46 by peptide mapping, sequence analysis and mass measurements.  相似文献   

14.
We studied the interaction between a synthetic peptide (sequence Ac-GXGGFGGXGGFXGGXGG-NH2, where X = arginine, Nω,Nω-dimethylarginine, DMA, or lysine) corresponding to residues 676–692 of human nucleolin and several DNA and RNA substrates using double filter binding, melting curve analysis and circular dichroism spectroscopy. We found that despite the reduced capability of DMA in forming hydrogen bonds, Nω,Nω-dimethylation does not affect the strength of the binding to nucleic acids nor does it have any effect on stabilization of a double-stranded DNA substrate. However, circular dichroism studies show that unmethylated peptide can perturb the helical structure, especially in RNA, to a much larger extent than the DMA peptide.  相似文献   

15.
The sodium hydrogen exchanger 1 (NHE1), which functions in maintaining the ratio of Na+ and H+ ions, is widely distributed in cell plasma membranes. It plays a prominent role in pH balancing, cell proliferation, differentiation, adhesion, and migration. However, its exact subcellular location and biological functions in Toxoplasma gondii are largely unclear. In this study, we cloned the C-terminal sequence of T. gondii NHE1 (TgNHE1) incorporating the C-terminal peptide of NHE1 (C-NHE1) into the pGEX4T-1 expression plasmid. The peptide sequence was predicted to have good antigenicity based on the information obtained from an immune epitope database. After induction of heterologous gene expression with isopropyl-b-D-thiogalactoside, the recombinant C-NHE1 protein successfully expressed in a soluble form was purified by glutathione sepharose beads as an immunogen for production of a rabbit polyclonal antiserum. The specificity of this antiserum was confirmed by western blotting and immunofluorescence. The antiserum could reduce T. gondii invasion into host cells, indicated by the decreased TgNHE1 expression in T. gondii parasites that were pre-incubated with antiserum in the process of cell entry. Furthermore, the antiserum reduced the virulence of T. gondii parasites to host cells in vitro, possibly by blocking the release of Ca2+. In this regard, this antiserum has potential to be a valuable tool for further studies of TgNHE1.  相似文献   

16.
Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821 Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-κB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-κB in MG-63 cells and MAPKs/NF-κB in SW-1353 cells.  相似文献   

17.
Go HJ  Jo EH  Seo JK  Hong YK  Lee HH  Kim GD  Park TW  Noga EJ  Park NG 《Peptides》2011,32(3):447-453
A new bioactive tetradecapeptide, GFKDNVSNRIAHGFamide, was isolated from the brain of the squid, Todarodes pacificus. Using isolated T. pacificus esophagus as a bioassay, the peptide was shown to induce potent contraction of smooth muscle. The threshold concentration for contraction was 5 × 10−10 M to 1 × 10−9 M. The peptide was homologous to other molluskan (class Gastropoda) and annelid myoactive tetradecapeptides and to some extent, to arthropodan tridecapeptides. A full-length cDNA encoding the biosynthetic precursor of the active peptide was cloned, revealing that the peptide is probably secreted following processing of a prepropeptide containing a signal peptide and prosequences. This is the first myoactive tetradecapeptide (MATP) to be isolated from any mollusk of the class Cephalopoda and we have named it Todarodes tetradecapeptide (TTP).  相似文献   

18.
19.
Aibellin is a 20-residue peptide antibiotic that has been isolated from the fungus Verticimonosporium ellipticum. Sequence-specific assignment of the 1H- and 13C-NMR signals of aibellin in a methanol solution was achieved by using the two-dimensional NMR technique. Furthermore, its secondary structure was characterized by circular dichroism (CD) and NOESY spectra. The observed NOEs, 3JNHCαH coupling constants and amide hydrogen–deuterium (H–D) exchange rates show that the peptide consisted of two α-helices and a bent structure around a Pro-14 residue.  相似文献   

20.
The trend to confer new functional properties to fermented dairy products by supplementation with bioactive peptides is growing in order to encounter the challenge of health-promoting foods. But these functional ingredients have not to be hydrolysed by proteases of bacteria used in the manufacture of these products. One of the two yoghurt bacteria, Streptococcus thermophilus, has long been considered as weakly proteolytic since its only cell wall-associated subtilisin-like protease, called PrtS, is not always present. Nevertheless, a recent study pointed out a possible peptidase activity in certain strains. In this present study, the stability of milk-derived bioactive peptides, e.g. the anxiolytic peptide, αs1-CN-(f91-97), in the presence of two different S. thermophilus strains with PrtS+ or PrtS? phenotype was studied. Both strains appeared to be capable of hydrolysing the αs1-CN-(f91-97) and other bioactive peptides by recurrent removal of N-terminal residues. The hydrolysis was neither due to intracellular peptidases nor to HtrA protease. Results obtained showed that the observed activity originates from the presence at the surface of both strains of an extracellular aminopeptidase activity. Moreover, a cell wall-associated X-prolyl dipeptidyl peptidase activity was also highlighted when β-casomorphin-7 was used as substrate. All of these findings suggest that, in order to use fermented milks as vector of bioactive peptides, the stability of these bioactive peptides in this kind of products implies to carefully characterize the potential action of the surface proteolytic enzymes of S. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号