首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53   总被引:33,自引:0,他引:33  
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.  相似文献   

2.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

3.
Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication.  相似文献   

4.
RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95.  相似文献   

5.
6.
7.
Mori T  Li Y  Hata H  Kochi H 《FEBS letters》2004,557(1-3):209-214
We previously reported the association of a novel Np95/ICBP90-like RING finger protein (NIRF) with a novel PEST-containing nuclear protein (PCNP). NIRF is a nuclear protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, Rb-binding motifs and a RING finger. In this study, we showed that NIRF has auto-ubiquitination activity, the hallmark of a ubiquitin ligase. PCNP was readily ubiquitinated in 293 and COS-7 cells, and NIRF ubiquitinated PCNP in vitro as well as in vivo. Considering that NIRF is implicated in cell cycle regulation, these findings suggest that NIRF and PCNP are a ubiquitin ligase and its substrate, respectively, and may constitute a novel signaling pathway with some relation to cell proliferation.  相似文献   

8.
LNX is a RING finger and PDZ domain containing protein that interacts with the cell fate determinant Numb. To investigate the function of LNX, we tested its RING finger domain for ubiquitin ligase activity. The isolated RING finger domain was able to function as an E2-dependent, E3 ubiquitin ligase in vitro and mutation of a conserved cysteine residue within the RING domain abolished its activity, indicating that LNX is the first described PDZ domain-containing member of the E3 ubiquitin ligase family. We have identified Numb as a substrate of LNX E3 activity in vitro and in vivo. In addition to the RING finger, a region of LNX, including the Numb PTB domain-binding site and the first PDZ domain, is required for Numb ubiquitylation. Expression of wild-type but not mutant LNX causes proteasome-dependent degradation of Numb and can enhance Notch signalling. These results suggest that the levels of mammalian Numb protein and therefore, by extension, the processes of asymmetric cell division and cell fate determination may be regulated by ubiquitin-dependent proteolysis.  相似文献   

9.
Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection.  相似文献   

10.
Signaling by phosphatidylinositol 3-kinases (PI3Ks) is often mediated by proteins which bind PI3K products directly and are localized to intracellular membranes rich in PI3K products. The FYVE finger domain binds with high specificity to PtdIns3P and proteins containing this domain have been shown to be important components of diverse PI3K signaling pathways. The genome of the yeast Saccharomyces cerevisiae encodes five proteins containing FYVE domains, including Pib1p, whose function is unknown. In addition to a FYVE finger motif, the primary structure of Pib1p contains a region rich in cysteine and histidine residues that we demonstrate binds 2 mol eq of zinc, consistent with this region containing a RING structural domain. The Pib1p RING domain exhibited E2-dependent ubiquitin ligase activity in vitro, indicating that Pib1p is an E3 RING-type ubiquitin ligase. Fluorescence microscopy was used to demonstrate that a GFP-Pib1p fusion protein localized to endosomal and vacuolar membranes and deletional analysis of Pib1p domains indicated that localization of GFP-Pib1p is mediated solely by the FYVE domain. These results suggest that Pib1p mediates ubiquitination of a subset of cellular proteins localized to endosome and vacuolar membranes, and they expand the repertoire of PI3K-regulated pathways identified in eukaryotic cells.  相似文献   

11.
BRCA1-BARD1 constitutes a heterodimeric RING finger complex associated through its N-terminal regions. Here we demonstrate that the BRCA1-BARD1 heterodimeric RING finger complex contains significant ubiquitin ligase activity that can be disrupted by a breast cancer-derived RING finger mutation in BRCA1. Whereas individually BRCA1 and BARD1 have very low ubiquitin ligase activities in vitro, BRCA1 combined with BARD1 exhibits dramatically higher activity. Bacterially purified RING finger domains comprising residues 1-304 of BRCA1 and residues 25-189 of BARD1 are capable of polymerizing ubiquitin. The steady-state level of transfected BRCA1 in vivo was increased by co-transfection of BARD1, and reciprocally that of transfected BARD1 was increased by BRCA1 in a dose-dependent manner. The breast cancer-derived BARD1-interaction-deficient mutant, BRCA1(C61G), does not exhibit ubiquitin ligase activity in vitro. These results suggest that the BRCA1-BARD1 complex contains a ubiquitin ligase activity that is important in prevention of breast and ovarian cancer development.  相似文献   

12.
It has been well documented that Mdm2 and its homologue MdmX not only are critical negative regulators of the tumor suppressor p53 but that both Mdm2 and MdmX interact to affect the function of the other. The mechanisms through which these effects are manifested, however, remain unclear. Although Mdm2 has been established as a RING finger ubiquitin ligase, MdmX has not been shown to possess this activity despite the extensive sequence homology between their respective RING finger domains. Here we demonstrate that MdmX acts as a ubiquitin ligase in vitro, being capable of autoubiquitination, as well as mediating the ubiquitination of p53. The addition of Mdm2 to in vitro ubiquitination assays containing MdmX results in a synergistic increase of ubiquitin conjugation. Analysis of the resulting ubiquitin conjugates reveals that this observed synergy reflects an increase in Mdm2 ubiquitination. This study also suggests that ubiquitination of Mdm2 and MdmX may not serve as a signal for degradation, as we show that each are capable of synthesizing non-lysine 48 polyubiquitin chains and, in fact, utilize multiple lysine linkages. Taken together, these findings suggest a more active role for MdmX in the Mdm2-MdmX-p53 regulatory network than has been proposed previously.  相似文献   

13.
RBX1 (RING box protein 1), also known as ROC1 (Regulator of Cullin 1), is an essential component of SCF (Skp1/Cullins/F-box) E3 ubiquitin ligases, which target diverse proteins for proteasome-mediated degradation. Our recent study showed that RBX1 silencing triggered a DNA damage response (DDR) leading to G(2)-M arrest, senescence, and apoptosis, with the mechanism remaining elusive. Here, we show that, in human cancer cells, RBX1 silencing causes the accumulation of DNA replication licensing proteins CDT1 and ORC1, leading to DNA double-strand breaks, DDR, G(2) arrest, and, eventually, aneuploidy. Whereas CHK1 activation by RBX1 silencing is responsible for the G(2) arrest, enhanced DNA damage renders cancer cells more sensitive to radiation. In Caenorhabditis elegans, RBX-1 silencing causes CDT-1 accumulation, triggering DDR in intestinal cells, which is largely abrogated by simultaneous CDT-1 silencing. RBX-1 silencing also induces lethality during development of embryos and in adulthood. Thus, RBX1 E3 ligase is essential for the maintenance of mammalian genome integrity and the proper development and viability in C. elegans.  相似文献   

14.
The p73 gene, a homologue of the p53 tumor suppressor, is expressed as TA and ΔN isoforms. TAp73 has similar activity as p53 and functions as a tumor suppressor whereas ΔNp73 has both pro- and anti-survival functions. While p73 is rarely mutated in spontaneous tumors, the expression status of p73 is linked to the sensitivity of tumor cells to chemotherapy and prognosis for many types of human cancer. Thus, uncovering its regulators in tumors is of great interest. Here, we found that Pirh2, a RING finger E3 ubiquitin ligase, promotes the proteasome-dependent degradation of p73. Specifically, we showed that knockdown of Pirh2 up-regulates, whereas ectopic expression of Pirh2 down-regulates, expression of endogenous and exogenous p73. In addition, Pirh2 physically associates with and promotes TAp73 polyubiquitination both in vivo and in vitro. Moreover, we found that p73 can be degraded by both 20 S and 26 S proteasomes. Finally, we showed that Pirh2 knockdown leads to growth suppression in a TAp73-dependent manner. Taken together, our findings indicate that Pirh2 promotes the proteasomal turnover of TAp73, and thus targeting Pirh2 to restore TAp73-mediated growth suppression in p53-deficient tumors may be developed as a novel anti-cancer strategy.  相似文献   

15.
Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4, and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4.  相似文献   

16.
Mulibrey nanism is an autosomal recessive prenatal-onset growth disorder characterized by dysmorphic features, cardiomyopathy, and hepatomegaly. Mutations in TRIM37 encoding a tripartite motif (TRIM, RING-B-box-coiled-coil)-family protein underlie mulibrey nanism. We investigated the ubiquitin ligase activity predicted for the RING domain of TRIM37 by analyzing its autoubiquitination. Full-length TRIM37 and its TRIM domain were highly polyubiquitinated when co-expressed with ubiquitin. Polyubiquitination was decreased in a mutant protein with disrupted RING domain (Cys35Ser;Cys36Ser) and in the Leu76Pro mutant protein, a disease-associated missense mutation affecting the TRIM domain of TRIM37. Bacterially produced GST-TRIM domain fusion protein, but not its Cys35Ser;Cys36Ser or Leu76Pro mutants, were polyubiquitinated in cell-free conditions, implying RING-dependent modification. Ubiquitin was also identified as an interaction partner for TRIM37 in a yeast two-hybrid screen. Ectopically expressed TRIM37 rapidly formed aggregates that were ubiquitin-, proteasome subunit-, and chaperone-positive in immunofluorescence analysis, defining them as aggresomes. The Cys35Ser;Cys36Ser mutant and the Leu76Pro and Gly322Val patient mutant proteins were markedly less prone to aggregation, implying that aggresomal targeting reflects a physiological function of TRIM37. These findings suggest that TRIM37 acts as a TRIM domain-dependent E3 ubiquitin ligase and imply defective ubiquitin-dependent degradation of an as-yet-unidentified target protein in the pathogenesis of mulibrey nanism.  相似文献   

17.
Mdm2, a key negative regulator of the p53 tumor suppressor, is a RING-type E3 ubiquitin ligase. The Mdm2 RING domain can be biochemically fractionated into two discrete species, one of which exists as higher order oligomers that are visible by electron microscopy, whereas the other is a monomer. Both fractions are ATP binding and E3 ligase activity competent, although the oligomeric fraction exhibits lower dependence on the E2 component of ubiquitin polymerization reactions. The extreme C-terminal five amino acids of Mdm2 are essential for E3 ligase activity in vivo and in vitro, as well as for oligomeric assembly of the protein. A single residue (phenylalanine 490) in that sequence is critical for both properties. Interestingly, the C-terminus of the Mdm2 homologue, MdmX (itself inert as an E3 ligase), can fully substitute for the equivalent segment of Mdm2 and restore its E3 activity. We further show that the Mdm2 C-terminus is involved in intramolecular interactions and can set up a platform for direct protein-protein interactions with the E2.  相似文献   

18.
TRAF-interacting protein (TRIP) is a RING-dependent ubiquitin ligase   总被引:1,自引:0,他引:1  
TRAF-interacting protein (TRIP) was initially identified as a TRAF1- and TRAF2-binding partner that inhibited NF-kappaB activation without a known mechanism. Inspection of the TRIP sequence revealed an N-terminal RING domain, which is found in many E3 ubiquitin (Ub) ligases. We show that TRIP is a RING-dependent Ub ligase that undergoes auto-ubiquitination and requires an intact RING domain. Both TRIP and its RING mutant interact with TRAF1, 2, 3, 5, and 6, but failed to interact with CYLD and NIK. Stable expression of TRIP or a RING mutant did not affect IKK activation induced by TNF or IL-1 and had no affect on TNF-induced apoptosis. Similarly, RANKL-induced signaling and osteoclastogenesis were not affected by TRIP or its RING mutant. Interestingly, TRIP expression was down regulated during the late stages of osteoclastogenesis. Taken together, our results demonstrate that TRIP is a novel RING-dependent Ub ligase and a binding partner for TRAFs.  相似文献   

19.
Li X  Lu D  He F  Zhou H  Liu Q  Wang Y  Shao C  Gong Y 《The Journal of biological chemistry》2011,286(37):32344-32354
Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B. Here, we report the identification of peroxiredoxin III (PrxIII) as a novel substrate of the CUL4B ubiquitin ligase complex. Two-dimensional gel electrophoresis coupled with mass spectrometry showed that PrxIII was among the proteins up-regulated in cells after RNAi-mediated CUL4B depletion. The impaired degradation of PrxIII observed in CUL4B knockdown cells was confirmed by Western blot. We further demonstrated that DDB1 and ROC1 in the DDB1-CUL4B-ROC1 complex are also indispensable for the proteolysis of PrxIII. In addition, the degradation of PrxIII is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of PrxIII. Furthermore, we observed a significant decrease in cellular reactive oxygen species (ROS) production in CUL4B-silenced cells, which was associated with increased resistance to hypoxia and H(2)O(2)-induced apoptosis. These findings are discussed with regard to the known function of PrxIII as a ROS scavenger and the high endogenous ROS levels required for neural stem cell proliferation. Together, our study has identified a specific target substrate of CUL4B ubiquitin ligase that may have significant implications for the pathogenesis observed in patients with mutations in CUL4B.  相似文献   

20.
We have previously described a gene of ectromelia virus (EV) that codes for a 28-kDa RING zinc finger-containing protein (p28) that is nonessential for virus growth in cell culture but is critical for EV pathogenicity in mice (T. G. Senkevich, E. V. Koonin, and R. M. L. Buller, Virology 198:118-128; 1994). Here, we show that, unlike all tested cell cultures, the expression of p28 is required for in vitro replication of EV in murine resident peritoneal macrophages. In macrophages infected with the p28- mutant, viral DNA replication was not detected, whereas the synthesis of at least two early proteins was observed. Immunofluorescence and biochemical analyses showed that in EV-infected macrophages or BSC-1 cells, p28 is associated with virus factories. By use of a vaccinia virus expression system to examine different truncated versions of p28, it was shown that the disruption of the specific structure of the RING domain had no influence on the intracellular localization of this protein. When viral DNA replication was inhibited with cytosine arabinoside, p28 was found in distinct, focal structures that may be precursors to the factories. We hypothesize that in macrophages, which are highly specialized, nondividing cells, p28 substitutes for an unknown cellular factor(s) that may be required for viral DNA replication or a stage of virus reproduction between the expression of early genes and the onset of DNA synthesis. In the absence of p28, the attenuation of EV pathogenicity can be explained by a failure of the virus to replicate in macrophage lineage cells at all successive steps in the spread of virus from the skin to its target organ, the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号