首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

2.
Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.  相似文献   

3.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

4.
Recognition of the substrates by ubiquitin ligases is crucial for substrate specificity in the ubiquitin-proteasome proteolytic pathway. In the present study, we designed a double RING finger ubiquitin ligase to direct the ubiquitin machinery to a specific substrate. The engineered ligase contains the RING finger domains of both BRCA1 and BARD1 linked to a substrate recognition site PCNA, which is known to interact with cyclin-dependent kinase inhibitor p57. The double RING finger ubiquitin ligase formed a homo-oligomer complex and exhibited significant ligase activity. Co-transfection of the ligase reduced the expression of transfected p57 to the background level in a proteasome-dependent manner and restored the colony formation ability of U2OS cells that is otherwise inhibited by overexpressed p57. The results indicate the ability of the engineered double RING ubiquitin ligase to target the intended substrate. By redesigning the substrate recognition site, expression of engineered double RING ubiquitin ligases may provide a useful tool for removing many different gene products at the protein level.  相似文献   

5.
The RING finger peroxins Pex2p, Pex10p and Pex12p are central components of the peroxisomal matrix protein import machinery. The RING domain enables each of these proteins to exhibit ubiquitin-protein ligase activity, which has been linked to ubiquitin-dependent regulation of the peroxisomal import receptor Pex5p. The RING peroxins are considered to form a heteromeric complex in vivo, although the elucidation of the structural assembly, as well as the functional interplay of the RING domains, has remained elusive. Using in vitro approaches, we show that the RING domains form a heteromeric complex with Pex10p(RING) as a central component that directly binds the Pex2p(RING) and Pex12p(RING). The RING domains proved to function as heteromeric pairs that display an Pex10p-dependent enhanced ligase activity in an ubiquitin conjugating enzyme-selective manner.  相似文献   

6.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

7.
Everett RD 《Journal of virology》2000,74(21):9994-10005
Herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 is a general activator of viral gene expression which stimulates the initiation of lytic infection and reactivation from quiescence and latency. The importance of ICP0 to the biology of HSV-1 infection has stimulated interest in its mode of action. Previous studies have reported its interactions with other viral regulatory molecules, with the translation apparatus, with cyclin D3, and with a ubiquitin-specific protease. It has been demonstrated that ICP0 is able to induce the proteasome-dependent degradation of a number of cellular proteins, including components of centromeres and small nuclear substructures known as ND10 or PML nuclear bodies. ICP0 has a RING finger zinc-binding domain which is essential for its functions. In view of several recent examples of other RING finger proteins which modulate the stability of specific target proteins by acting as components of E3 ubiquitin ligase complexes, this study has explored whether ICP0 might operate via a similar mechanism. Evidence that the foci of accumulated ICP0 in transfected and infected cells contain enhanced levels of conjugated ubiquitin is presented. This effect was dependent on the RING finger region of ICP0, and comparison of the properties of a number of ICP0 mutants revealed an excellent correlation between previously established functions of ICP0 and its ability to induce concentrations of colocalizing conjugated ubiquitin. These results strongly support the hypothesis that a major factor in the mechanism by which ICP0 influences virus infection is its ability to induce the degradation of specific cellular targets by interaction with the ubiquitin-proteasome pathway.  相似文献   

8.
Ubiquitylation, the covalent modification of proteins by the addition of ubiquitin, relies on a cascade of enzymes that culminates in an E3 ligase that promotes the transfer of ubiquitin from an E2 enzyme to the target protein. The most prevalent E3 ligases contain a type of zinc-finger domain called RING, and although an essential role for the RING domain in ubiquitin transfer is widely accepted, the molecular mechanism by which this is achieved remains uncertain. In this review, we highlight recent studies that have suggested that the RING domain modulates the stability of the E2-ubiquitin conjugate so that catalysis is promoted. We also review the role of RING dimerisation and emphasise the importance of studying RING domains in the context of the full-length protein.  相似文献   

9.
The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity.  相似文献   

10.
A critical aspect of E3 ubiquitin ligase function is the selection of a particular E2 ubiquitin-conjugating enzyme to accomplish ubiquitination of a substrate. We examined the requirements for correct E2-E3 specificity in the RING-H2 ubiquitin ligase Hrd1p, an ER-localized protein known to use primarily Ubc7p for its function. Versions of Hrd1p containing the RING motif from homologous E3s were unable to carry out Hrd1p function, revealing a requirement for the specific Hrd1p RING motif in vivo. An in vitro assay revealed that these RING motifs were sufficient to function as ubiquitin ligases, but that they did not display the E2 specificity predicted from in vivo results. We further refined the in vitro assay of Hrd1p function by demanding not only ubiquitin ligase activity, but also specific activity that recapitulated both the E2 specificity and RING selectivity observed in vivo. Doing so revealed that correct E2 engagement by Hrd1p required the presence of portions of the Hrd1p soluble cytoplasmic domain outside the RING motif, the placement of the Hrd1p ubiquitin ligase in the ER membrane, and presentation of Ubc7p in the cytosolic context. We confirmed that these conditions supported the ubiquitination of Hrd1p itself, and the transfer of ubiquitin to the prototype substrate Hmg2p-GFP, validating Hrd1p self-ubiquitination as a viable assay of ligase function.  相似文献   

11.
Signaling by phosphatidylinositol 3-kinases (PI3Ks) is often mediated by proteins which bind PI3K products directly and are localized to intracellular membranes rich in PI3K products. The FYVE finger domain binds with high specificity to PtdIns3P and proteins containing this domain have been shown to be important components of diverse PI3K signaling pathways. The genome of the yeast Saccharomyces cerevisiae encodes five proteins containing FYVE domains, including Pib1p, whose function is unknown. In addition to a FYVE finger motif, the primary structure of Pib1p contains a region rich in cysteine and histidine residues that we demonstrate binds 2 mol eq of zinc, consistent with this region containing a RING structural domain. The Pib1p RING domain exhibited E2-dependent ubiquitin ligase activity in vitro, indicating that Pib1p is an E3 RING-type ubiquitin ligase. Fluorescence microscopy was used to demonstrate that a GFP-Pib1p fusion protein localized to endosomal and vacuolar membranes and deletional analysis of Pib1p domains indicated that localization of GFP-Pib1p is mediated solely by the FYVE domain. These results suggest that Pib1p mediates ubiquitination of a subset of cellular proteins localized to endosome and vacuolar membranes, and they expand the repertoire of PI3K-regulated pathways identified in eukaryotic cells.  相似文献   

12.
Leiliang Zhang 《FEBS letters》2009,583(4):607-614
Post-translational polypeptide tagging by conjugation with ubiquitin and ubiquitin-like (Ub/Ubl) molecules is a potent way to alter protein functions and/or sort specific protein targets to the proteasome for degradation. Many poxviruses interfere with the host Ub/Ubl system by encoding viral proteins that can usurp this pathway. Some of these include viral proteins of the membrane-associated RING-CH (MARCH) domain, p28/Really Interesting New Gene (RING) finger, ankyrin-repeat/F-box and Broad-complex, Tramtrack and Bric-a-Brac (BTB)/Kelch subgroups of the E3 Ub ligase superfamily. Here we describe and discuss the various strategies used by poxviruses to target and subvert the host cell Ub/Ubl systems.  相似文献   

13.
The tumor‐suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N‐terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain‐containing proteins. RING domains bind and activate E2 ubiquitin‐conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer‐associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1.  相似文献   

14.
Recently, it has been reported that PHD fingers of MEKK1 kinase and a family of viral and cellular membrane proteins have E3 ubiquitin ligase activity. Here we describe unique sequence and structural signatures that distinguish PHD fingers from RING fingers, which function primarily as E3 ubiquitin ligases, and demonstrate that the Zn-binding modules of the above proteins are distinct versions of the RING domain rather than PHD fingers. Thus, currently available data reveal extreme versatility of RINGs and their derivatives that function as E3 ubiquitin ligases but provide no evidence of this activity among PHD fingers whose principal function appears to involve specific protein-protein and possibly protein-DNA interactions in chromatin.  相似文献   

15.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

16.
Tripartite motif (TRIM) proteins comprise a large family of RING‐type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled‐coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher‐order oligomerization of the basal coiled‐coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.  相似文献   

17.
The ubiquitin system plays important roles in the regulation of numerous cellular processes by conjugating ubiquitin to target proteins. In most cases, conjugation of polyubiquitin to target proteins regulates their function. In the polyubiquitin chains reported to date, ubiquitin monomers are linked via isopeptide bonds between an internal Lys and a C-terminal Gly. Here, we report that a protein complex consisting of two RING finger proteins, HOIL-1L and HOIP, exhibits ubiquitin polymerization activity by recognizing ubiquitin moieties of proteins. The polyubiquitin chain generated by the complex is not formed by Lys linkages, but by linkages between the C- and N-termini of ubiquitin, indicating that the ligase complex possesses a unique feature to assemble a novel head-to-tail linear polyubiquitin chain. Moreover, the complex regulates the stability of Ub-GFP (a GFP fusion protein with an N-terminal ubiquitin). The linear polyubiquitin chain generated post-translationally may function as a new modulator of proteins.  相似文献   

18.
We have previously described a gene of ectromelia virus (EV) that codes for a 28-kDa RING zinc finger-containing protein (p28) that is nonessential for virus growth in cell culture but is critical for EV pathogenicity in mice (T. G. Senkevich, E. V. Koonin, and R. M. L. Buller, Virology 198:118-128; 1994). Here, we show that, unlike all tested cell cultures, the expression of p28 is required for in vitro replication of EV in murine resident peritoneal macrophages. In macrophages infected with the p28- mutant, viral DNA replication was not detected, whereas the synthesis of at least two early proteins was observed. Immunofluorescence and biochemical analyses showed that in EV-infected macrophages or BSC-1 cells, p28 is associated with virus factories. By use of a vaccinia virus expression system to examine different truncated versions of p28, it was shown that the disruption of the specific structure of the RING domain had no influence on the intracellular localization of this protein. When viral DNA replication was inhibited with cytosine arabinoside, p28 was found in distinct, focal structures that may be precursors to the factories. We hypothesize that in macrophages, which are highly specialized, nondividing cells, p28 substitutes for an unknown cellular factor(s) that may be required for viral DNA replication or a stage of virus reproduction between the expression of early genes and the onset of DNA synthesis. In the absence of p28, the attenuation of EV pathogenicity can be explained by a failure of the virus to replicate in macrophage lineage cells at all successive steps in the spread of virus from the skin to its target organ, the liver.  相似文献   

19.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53   总被引:33,自引:0,他引:33  
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.  相似文献   

20.
One up-regulated host gene identified previously was found involved in the infection process of Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. The full length cDNA of this gene was cloned by 5′ and 3′-rapid amplification of cDNA ends and found to encode a polypeptide containing a conserved really interesting new gene (RING) domain and a transmembrane domain. The gene might function as an ubiquitin E3 ligase. We designated this protein in Nicotiana benthamiana as ubiquitin E3 ligase containing RING domain 1 (NbUbE3R1). Further characterization by using Tobacco rattle virus-based virus-induced gene silencing (loss-of-function) revealed that increased BaMV accumulation was in both knockdown plants and protoplasts. The gene might have a defensive role in the replication step of BaMV infection. To further inspect the functional role of NbUbE3R1 in BaMV accumulation, NbUbE3R1 was expressed in N. benthamiana plants. The wild-type NbUbE3R1-orange fluorescent protein (NbUbE3R1-OFP), NbUbE3R1/△TM-OFP (removal of the transmembrane domain) and NbUbE3R1/mRING-OFP (mutation at the RING domain, the E2 interaction site) were transiently expressed in plants. NbUbE3R1 and its derivatives all functioned in restricting the accumulation of BaMV. The common feature of these constructs was the intact substrate-interacting domain. Yeast two-hybrid and co-immunoprecipitation experiments used to determine the possible viral-encoded substrate of NbUbE3R1 revealed the replicase of BaMV as the possible substrate. In conclusion, we identified an up-regulated gene, NbUbE3R1 that plays a role in BaMV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号