首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
双酚类化合物(bisphenols,BPs)作为工业原料及药物和个人护理品的重要成分之一,在自然界中广泛分布。BPs作为类雌性激素造成的生态风险已成为全球备受关注的环境问题之一。研究人员使用不同方式分离得到菌株或菌群,尝试对BPs进行无害化降解,目前已取得了一些重要的研究进展。本文对近年来细菌降解BPs的相关研究进行了系统梳理,重点关注以双酚A(bisphenol A,BPA)为典型BPs的细菌降解,总结不同路径中的关键作用基因,讨论相同路径中酶的差异及作用方式,并分析其对BPA的降解效果。本文也简要总结了双酚S(bisphenolS,BPS)和其他BPs的细菌降解研究情况。通过总结讨论现有成果,分析细菌降解BPs中尚需深入研究的内容,探寻未来BPs细菌降解机理及应用的研究方向。  相似文献   

2.
AIMS: Azimsulfuron is a recently introduced sulfonylurea herbicide useful in controlling weeds in paddy fields. To date very little information is available on the biodegradation of this pesticide and on its effect on the soil microbial community. The aim of this work was to study its biodegradation both in slurry soil microcosms and in batch tests with mixed and pure cultures. METHODS AND RESULTS: Azimsulfuron was applied to forest bulk soil in order to study its effect on the structure of the bacterial soil community, as detectable by denaturant gradient gel electrophoresis (DGGE) analyses. Biodegradation and abiotic processes were investigated by HPLC analyses. In addition, a microbial consortium was selected, that was able to use azimsulfuron as the sole energy and carbon source. One of the metabolites produced by the consortium was isolated and identified through LC-MS analyses. Cultivable bacteria of the consortium were isolated and identified by 16S rDNA sequencing (1400 bp). CONCLUSIONS: Azimsulfuron treatment seems to have the ability to cause changes in the bacterial community structure that are detectable by DGGE analyses. It is easily biodegraded both in microcosms and in batch tests, with the formation of an intermediate that was identified as 2-methyl-4-(2-methyl-2H-tetrazol-5-yl)-2H-pyrazole-3-sulfonamide. SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on the biodegradation of azimsulfuron and its effects on the soil microbiota.  相似文献   

3.
综述了基因重组、原生质体融合、外源基因、降解酶和固相反应器等基因工程技术在降解农药中的研究及应用进展,提出了几种高效降解农药的基因工程菌的构建策略和构建手段。  相似文献   

4.
若尔盖高原湿地不同退化阶段的土壤细菌群落多样性   总被引:7,自引:0,他引:7  
采用传统分离培养和基于16S rDNA的变性梯度凝胶电泳(Denaturing gradient gel electrophoresis, DGGE)的方法, 研究了若尔盖高原湿地不同退化阶段土壤类型(泥炭土、沼泽土、草甸土、风沙土)和土壤深度(0 cm?20 cm、20 cm?40 cm、40 cm?60 cm)中微生物的数量、细菌群落结构及其多样性。结果表明: 微生物数量总体上不仅随着土壤类型的改变而减少(泥炭土>草甸土>沼泽土>风沙土)也随着土壤深度的增加而递减(0 cm?20 cm>20 cm?4  相似文献   

5.
【目的】为筛选吡啶高效降解复合菌系,促进高浓度吡啶废水的降解。本研究围绕吡啶降解复合菌系的筛选、降解特性及代谢途径,旨在获得吡啶高效降解复合菌系,为高浓度吡啶废水微生物降解及完全矿化提供理论依据和技术支撑。【方法】以吡啶为唯一碳氮源从某农药废水处理系统好氧活性污泥中筛选得到一个吡啶高效降解复合菌系MD1。采用16S rRNA高通量测序技术探究了MD1的群落结构及多样性,通过单因素实验考察了MD1的降解特性,利用气相色谱-质谱联用仪对MD1降解吡啶的代谢产物进行了初步检测与鉴定,推测吡啶可能的降解途径。【结果】结果显示,在温度30 ℃、pH 8.0、NaCl浓度0.1%的最佳条件下培养72 h,MD1对初始浓度1 400 mg/L的吡啶降解率为98.44%±0.27%。在属水平上,MD1主要由副球菌属(Paracoccus sp.)、布鲁氏菌属(unclassified_Brucellaceae)、无色杆菌属(Achromobacter sp.)等组成。由代谢产物检测结果初步推测MD1对吡啶的代谢途径为吡啶→烟酸→6-羟基烟酸→2,5-二羟基吡啶→N-甲酰基马来酰胺酸→马来酰胺酸→马来酸→CO2+H2O。【结论】研究筛选得到一个可高效降解吡啶、降解性能稳定的复合菌系MD1。解析了MD1的微生物组成多样性和群落结构,推测了MD1可能的代谢途径,研究结果丰富了吡啶降解微生物资源。  相似文献   

6.
AIMS: To investigate the biodegrading ability and cometabolism of synthetic pyrethroid (SP) utilizing bacteria in cultures with various minerals and carbon sources. METHODS AND RESULTS: Previously isolated SP-degrading Pseudomonas sp. and Serratia sp. were used in cultures containing either flumethrin SP or cypermethrin SP formulations. The culture media consisted of either (i) water only, (ii) water and sucrose, (iii) mineral broth or (iv) mineral broth and sucrose. The growth of both organisms was greatest in the mineral broth and sucrose medium, but the growth-limiting factor for Pseudomonas sp. strain Circle was the mineral content whereas for Serratia sp. strain White it was the carbon substrate. CONCLUSION: The greatest extent of degradation of both SP-based compounds occurred with Pseudomonas sp. strain Circle but was dependant on the medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation could lead to the development of a relatively inexpensive medium supplement to enhance the microbial biodegradation of undesirable compounds, either in situ or ex situ. In this particular case, for the biodegradation of SPs used in sheep dip.  相似文献   

7.
A bacterial community in an aquifer contaminated by s- triazines was studied. Groundwater microcosms were treated with terbuthylazine at a concentration of 100 μg L−1 and degradation of the herbicide was assessed. The bacterial community structure (abundance and phylogenetic composition) and function (carbon production and cell viability) were analysed. The bacterial community was able to degrade the terbuthylazine; in particular, Betaproteobacteria were involved in the herbicide biotransformation. Identification of some bacterial isolates by PCR amplification of the 16S rRNA gene revealed the presence of two Betaproteobacteria species able to degrade the herbicide: Advenella incenata and Janthinobacterium lividum . PCR detection of the genes encoding s -triazine-degrading enzymes indicated the presence of the atz A and atz B genes in A. incenata and the atz B and atz C genes in J. lividum . The nucleotide sequences of the PCR fragments of the atz genes from these strains were 100% identical to the homologous genes of the Pseudomonas sp. strain ADP. In conclusion, the results show the potential for the use of a natural attenuation strategy in the treatment of aquifers polluted with the terbuthylazine. The two bacteria isolated could facilitate the implementation of effective bioremediation protocols, especially in the case of the significant amounts of herbicide that can be found in groundwater as a result of accidental spills.  相似文献   

8.
AIMS: Bromoxynil degradation by soil micro-organisms has been shown to be co-oxidative in character. In this study, we investigate both the impact of the application of increasing bromoxynil concentrations on soil-derived bacterial communities and how these changes are reflected in the degradation of the compound. Our aim was to test the hypothesis that the addition of bromoxynil to a soil-derived bacterial community, and the availability of a readily utilizable carbon source would have an impact on bromoxynil degradation, and that would be reflected in the bacteria present in the soil community. METHODS AND RESULTS: Degradation of bromoxynil was observed in soil-derived communities containing 15 mg l(-1), but not 50 mg l(-1) of the compound, unless glucose was added. This suggests that the addition of carbon stimulates co-oxidative bromoxynil degradation by the members of the bacterial community. Measurable changes in the bacterial community indicated that the addition of bromoxynil led to deterministic selection on the bacterial population, i.e. the communities observed arise through the selection of specific micro-organisms that are best adapted to the conditions in the soil. The addition of bromoxynil was also shown to have a negative impact on the presence of alpha and gamma-proteobacteria in the soil community. CONCLUSION: Bromoxynil degradation is significantly inhibited in bacterial soil communities in the absence of readily accessible carbon. The application of bromoxynil appears to exert deterministic selection on the bacterial community. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the effects of increasing bromoxynil concentrations on a model bacterial population derived from soil. Soil communities show qualitative and quantitative differences to bromoxynil application depending on the availability of organic carbon. These findings might have implications for the persistence of bromoxynil in agricultural soils.  相似文献   

9.
细菌利用不同碳、氮源共代谢降解脱色偶氮染料研究进展   总被引:1,自引:0,他引:1  
本文主要综述了细菌利用碳、氮源等不同共代谢基质降解脱色偶氮染料的研究进展。综合文献结果表明,在单一碳源、单一氮源、复合碳氮源等不同共代谢基质条件下,细菌降解脱色偶氮染料的效能存在较大差异。其影响因素主要包括碳源种类、氮源种类、浓度、碳氮源复合比例等,其中碳、氮源种类影响最为显著。针对偶氮染料,只有提供合适的碳、氮源共代谢基质,才能对细菌降解脱色的效果起到明显的促进作用。同时,在不同碳、氮源共代谢基质条件下,细菌菌群群落结构及优势功能菌种差异较大,而不同碳、氮源共代谢基质作为偶氮染料还原脱色的电子供体,产生的脱色效能也有显著不同。最后,对利用碳、氮源共代谢降解脱色偶氮染料的研究方向进行了展望,认为复合合适的碳、氮源在提高细菌菌群降解脱色效率方面具有较大潜力,另一方面,细菌混合菌群利用碳、氮源共代谢降解脱色偶氮染料的微观分子生态学机制,酶学作用机制,功能菌种与功能蛋白之间相互作用机制等还有待深入研究。  相似文献   

10.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

11.
Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17–26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.  相似文献   

12.
多环芳烃厌氧生物降解研究进展   总被引:1,自引:1,他引:1  
孙娇  张作涛  郭海礁  王慧 《微生物学报》2020,60(12):2844-2861
多环芳烃(PAHs)是环境中广泛分布的一类持久性有机污染物,对生态环境和公众健康具有极大危害。微生物降解是环境中去除多环芳烃污染的有效途径,近年来PAHs厌氧生物降解研究逐渐取代好氧降解成为人们关注的重点。本文从PAHs厌氧生物降解的研究背景出发,从不同厌氧还原反应体系、厌氧降解微生物、PAHs厌氧生物转化途径等方面阐述了PAHs厌氧生物降解的研究概况,归纳了对PAHs厌氧生物降解有积极作用的影响因素,提出了PAHs厌氧降解研究目前存在的问题,并对该领域未来研究方向作了简述和展望。希望为多环芳烃厌氧生物降解与环境修复研究与实践提供参考。  相似文献   

13.
许睿  陈方  丁陈君 《生物工程学报》2023,39(5):1867-1882
当前,白色污染造成的消极影响已经扩散到人类社会经济、生态和健康等各个方面,循环生物经济发展进程面临严峻挑战。作为全球最大的塑料生产消费国家,我国在塑料污染的治理问题上肩负着重要责任。在此背景下,本文分析了美国、欧洲、日本与我国塑料降解与回收的相关战略,并对该领域的文献与专利展开计量,从研发趋势、主要研发国家和研发机构等角度了解其技术研发现状,探讨我国塑料降解回收发展面临的机会与挑战,最终提出了政策体系、技术路径、产业发展与公众认知四位一体的未来发展建议。  相似文献   

14.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   

15.
小黑麦对石油污染盐碱土壤细菌群落与石油烃降解的影响   总被引:1,自引:0,他引:1  
王拓  唐璐  栾玥  张淼  陈佳欣  郭长虹 《生态学报》2019,39(24):9143-9151
为了研究小黑麦对石油污染盐碱土壤中的细菌群落与石油烃降解率的影响,采用高通量测序技术,设置0 g/kg,1 g/kg和5 g/kg三个石油浓度,以未种植小黑麦的土壤作为对照,对6组不同处理的盐碱土壤样品的细菌群落结构及其多样性进行测定,并分析土壤中的石油烃降解率。结果表明:在土壤石油浓度为1 g/kg和5 g/kg时,小黑麦根际土壤中的石油烃降解率相较对照组分别提高了36.67%和33.20%。从6个土壤样品中分别获得21398—27899条测序序列。在石油污染土壤中,小黑麦根际土壤的细菌群落多样性和丰度均大于对照组的土壤。同时,在"门","纲","属"的分类水平上,小黑麦根际土壤细菌群落中的一些根际细菌的相对丰度增加了,主要包括变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、γ-变形菌纲(Gammaproteobacteria)、烷烃降解菌科-未命名菌属(Alcanivoracaceae_norank)、黄单胞菌属(Xanthomonas)、亚硝化单胞菌-不可培养菌属(Nitrosomonadaceae_unculture)等。有一些相对丰度增加的根际细菌是以石油及石油分解物为碳源的微生物。本研究证明种植小黑麦改变了石油污染盐碱土壤根际土壤细菌群落结构组成和多样性,促进了降解石油微生物群落的构建,显著提高了盐碱土壤石油污染的降解效果。研究结果为石油污染盐碱土壤的植物修复奠定了理论基础。  相似文献   

16.
Summary This study examined the microbial degradation of fuel oil by nine highly adapted different commercially available mixed bacterial cultures (DBC-plus, Flow Laboratories, Meckenheim, F.R.G.) and a bacterial community from a domestic sewage sludge sample. All mixed cultures were cultivated under aerobic batch conditions shaking (110 rpm) at 20°C in a mineral base medium containing 1 or 5% (v/v) fuel oil as the sole carbon source. Percent degradation of fuel oil and the n-alkane fraction was recorded for the nine DBC-plus cultures and the mixed population of the activated sludge sample. The increase in colony counts, protein, and optical density was studied during a 31-day incubation period for DBC-plus culture A, DBC-plus culture A2 and the activated sludge sample. The activated sludge mixed culture was most effective in degrading fuel oil, but various isolated bacterial strains from this bacterial community were not able to grow on fuel oil as the sole carbon source. In contrast, the n-alkane degradation rates of the DBC-cultures were lower, but single strains from the commercially available mixed cultures were able to mineralize fuel oil hydrocarbons. Strains ofPseudomonas aeruginosa were isolated most frequently and these organisms were able to grow very rapidly on fuel oil as a complex sole carbon source. The results indicate that fuel oil degradation in domestic sewage sludge is performed by mixed populations of naturally occurring bacteria and does not depend on the application of highly adapted commercially available cultures.  相似文献   

17.
Summary Pseudomonas paucimobilis was isolated from a consortium which was capable of degrading dicamba (3,6-dichloro-2-methoxybenzoic acid) as the sole source of carbon. The degradation of dicamba byP. paucimobilis and the consortium was examined over a range of substrate concentration, temperature, and pH. In the concentration range of 100–2000 mg dicamba L–1 (0.5–9.0 mM), the degradation was accompanied by a stoichiometric release of 2 mol of Cl per mol of dicamba degraded. The cultures had an optimum pH 6.5–7.0 for dicamba degradation. Growth studies at 10°C, 20°C, and 30°C yielded activation energy values in the range of 19–36 kcal mol–1 and an average Q10 value of 4.0. Compared with the pure cultureP. paucimobilis, the consortium was more active at the lower temperature.  相似文献   

18.
The aim of the present article was to evaluate potential synergism between crystalline proteins produced by two Bacillus thuringiensis Berliner strains, MPU B6 and MPU B9, against beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Protein inclusions of bacterial strains were isolated from a spore‐crystal mixture. We estimated the 50% lethal concentration (LC50) of crystals for S. exigua larvae. Insecticidal activity of MPU B6 and MPU B9 individual crystal preparations against caterpillars were determined and compared with the commercial pesticide Foray. Protein crystals of MPU B9 had the highest toxicity against S. exigua. The proteins were approximately 25× more toxic than Foray. Insecticidal activity of protein crystals of MPU B6 isolate was approximately 2.5× higher than that of Foray. A mixture of crystals suspensions of both isolates MPU B6/MPU B9 had an additive effect on S. exigua caterpillars. The high insecticidal potency of B. thuringiensis MPU B9 crystals against S. exigua predisposes the strain for additional studies on production of a new effective preparation against pest insects.  相似文献   

19.
Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria was 10-20 times higher than that of free-living bacteria, indicating that the individual strains could increase their protease activity within a short time (2 h) upon attachment to surfaces. Agar spheres with embedded diatom cells were colonized faster than plain agar spheres and the attached bacteria were clustered around the agar-embedded diatom cells, indicating a chemosensing response. Increased protease activity and BPP allow attached bacteria to quickly exploit aggregate resources upon attachment, which may accelerate remineralization of marine snow and reduce the downward carbon fluxes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号