首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fucosylglycolipid from the eggs of the sea urchin, Hemicentrotus pulcherrimus, was determined by using two-dimensional NMR methods. Subspectra extraction by the homonuclear Hartmann-Hahn method was useful for identification of the individual sugar components. The homonuclear Hartmann-Hahn and double-quantum-filtered correlated spectra were analyzed to establish the assignments of sugar proton resonances. On the basis of the resonance assignments, the linkages of the individual sugar components were determined to be as follows. [formula: see text] This glycolipid contains a novel skeletal structure with the linkages of GalNAc beta 1-4GlcNAc beta 1-4Glc beta. We also observed that 2-hydroxylation of the fatty acids induced appreciable chemical shift changes of the proton resonances of the phytosphingosine moiety as well as the anomeric proton resonance of the reducing terminal glucose.  相似文献   

2.
J Feigon  W Leupin  W A Denny  D R Kearns 《Biochemistry》1983,22(25):5943-5951
In this study two-dimensional NMR techniques (COSY and NOESY) have been used in conjunction with one-dimensional NMR results to complete the assignment of the proton NMR spectrum of the double-stranded DNA decamer, d(ATATCGATAT)2, and to obtain qualitative information about numerous interproton distances in this molecule and some limited information about conformational dynamics. COSY and NOESY measurements have been combined to systematically assign many of the resonances from the H1' and H2',2" sugar protons to specific nucleotides in the double helix. This method relies on the fact that sugar protons within a specific nucleotide are scalar coupled and that base protons (AH8, GH8, TH6, and CH6) in right-handed helices can interact simultaneously with their own H2',2" sugar protons and those of the adjacent (5'-3') nucleotide attached to its 5' side (i.e., XpA not ApX). A COSY experiment is used to identify sugar resonances within a residue whereas the NOESY experiment allows the neighboring sugar to be connected (linked). The CH5 and CH6 resonances in the spectrum can immediately be identified by the COSY experiment. The methyl protons of thymine residues exhibit strong through-space interbase interactions both with their own TH6 proton and with AH8 proton on the adjacent (5'-3') adenine residue. These interactions are used both to make assignments of the spectra and to establish that the thymine methyl groups are in close proximity to the AH8 protons of adjacent adenine residues [Feigon, J., Wright, J. M., Leupin, W., Denny, W. A., & Kearns, D. R. (1982) J. Am. Chem. Soc. 104, 5540].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ivancic M  Hsu VL 《Biopolymers》2000,54(1):35-43
Important intrinsic characteristics of the rotating frame nuclear Overhauser effect spectroscopy (ROESY) experiment were found to be advantageous in DNA solution structure determination. In a ROESY experiment, the different mechanisms of relaxation result in different signs of cross peaks, enabling a clear distinction between H2' resonances and H2" resonances of the DNA sugar backbone. This method is of particular importance in crowded spectra, for purine resonances whose H2', H2" protons typically resonate closely, as well as in conditions where line broadening makes coupling constants in a correlated spectroscopy experiment impossible to determine. By observing the signs of cross peaks in the base proton to H2', H2" sugar proton region, the ROESY spectrum can be used to distinguish A-form, B-form, and Z-form DNA.  相似文献   

4.
1H NMR has been used to study the interactions of ellipticine and the ellipticine analogues 2-3-dimethyl-6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline and 6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline with the self-complementary decadeoxyribonucleotide d(CGCGATCGCG)2. The Watson-Crick H-bonded imino proton resonances were studied. The drugs were shown to bind to the duplex by intercalation involving slow exchange kinetics for the imino proton resonances on the NMR time scale (500 MHz). Ellipticine and the 2,3-dimethyl analogue were found not to show strong base preferences, while the other analogue was found to have a preferred primary binding site between the A.T base pairs with a probable minor secondary binding site between the A.T and adjacent G.C base pairs. The new drug-shifted imino proton resonances were assigned through saturation transfer experiments. The base-specific interactions were accompanied by drug-induced non-uniform broadening of the resonances (due to intermediate chemical exchange kinetics), in the spectral region of the non-exchangeable aromatic and sugar H1' proton resonances of the oligonucleotide at 25 degrees C.  相似文献   

5.
A 500-MHz 1H-NMR study on a double-stranded non-self-complementary DNA undecamer comprising a portion of the specific target site for the cyclic AMP receptor protein in the gal operon is presented. Using pre-steady-state nuclear Overhauser effect (NOE) measurements, all exchangeable imino, non-exchangeable base, methyl, and H1', H2' and H2" sugar proton resonances are assigned in a sequential manner. In addition, some of the H3' sugar proton resonances are also assigned and some of the exchangeable amino proton resonances identified. The relative magnitudes of the intranucleotide and internucleotide NOEs are indicative of a right-handed B-type conformation for the duplex undecamer in solution.  相似文献   

6.
DNA oligomer d(CGGAAGACTCTCCTCCG):d(CGGAGGAGAGTCTTCCG) named UASG (17mer M.W. = 11 kDa) was studied by 1H NMR and heteronuclear two dimensional (2D) NMR. All the labile protons and half of the non-exchangeable protons were assigned by use of conventional 1H 2D experiments including NOESY using 1-1 echo excitation for water suppression. Signal degeneracy in the sugar proton region made it difficult to make assignments of the remaining half of the non-exchangeable protons of the oligomer in 1H 2D spectra. Here we report a new strategy using 1H/13C and 1H/31P heteronuclear single-quantum correlation spectroscopy combined with homonuclear three dimensional NOESY-TOCSY. By this strategy, most of the proton resonances of the oligomer have been assigned, and it turned out that the whole conformation of the oligomer is B-form like.  相似文献   

7.
R E Klevit  D E Wemmer  B R Reid 《Biochemistry》1986,25(11):3296-3303
High-resolution NMR techniques have been used to examine the structural and dynamical features of the interaction between distamycin A and the self-complementary DNA dodecamer duplex d-(CGCGAATTCGCG)2. The proton resonances of d(CGCGAATTCGCG)2 have been completely assigned by previous two-dimensional NMR studies [Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336]. Addition of the asymmetric drug molecule to the symmetric dodecamer leads to the formation of an asymmetric complex as evidenced by a doubling of DNA resonances over much of the spectrum. In two-dimensional exchange experiments, strong cross-peaks were observed between uncomplexed DNA and drug-bound DNA resonances, permitting direct assignment of many drug-bound DNA resonances from previously assigned free DNA resonances. Weaker exchange cross-peaks between formerly symmetry related DNA resonances indicate that the drug molecule flips head-to-tail on one duplex with half the frequency at which it leaves the DNA molecule completely. In experiments performed in H2O, nuclear Overhauser effects (NOEs) were observed from each drug amide proton to an adenine C2H and a pyrrole H3 ring proton. In two-dimensional nuclear Overhauser experiments performed on D2O solutions, strong intermolecular NOEs were observed between each of the three pyrrole H3 resonances of the drug and an adenine C2H resonance, with weaker NOEs observed between the drug H3 resonances and C1'H resonances. The combined NOE data allow us to position the distamycin A unambiguously on the DNA dodecamer, with the drug spanning the central AATT segment in the minor groove.  相似文献   

8.
Y Yamamoto  A Osawa  Y Inoue  R Ch?j?  T Suzuki 《FEBS letters》1989,247(2):263-267
2D NMR spectroscopies have been successfully used to characterize the heme peripheral vinyl groups in paramagnetic hemoprotein in spite of the difficulties from the rapid paramagnetic relaxation and the low digital resolution of the 2D NMR map. The scalar coupling network system among the vinyl protons is clearly identified in the COSY spectra from its characteristic cross-peak pattern and the dipolar coupling connectivities of the vinyl proton resonances with other heme side-chain proton resonances not only provide the specific assignment of vinyl beta-proton resonances but also allow the determination of the vinyl group orientation with respect to the heme plane.  相似文献   

9.
Highly selective and efficient water signal suppression is indispensable in biomolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments. However, the application of conventional water suppression schemes can cause a significant or complete loss of the biomolecular resonances at and around the water chemical shift (ω2). In this study, a new sequence, NOESY-WaterControl, was developed to address this issue. The new sequence was tested on lysozyme and bovine pancreatic trypsin inhibitor (BPTI), demonstrating its efficiency in both water suppression and, more excitingly, preserving water-proximate biomolecular resonances in ω2. The 2D NOESY maps obtained using the new sequence thus provide more information than the maps obtained with conventional water suppression, thereby lessening the number of experiments needed to complete resonance assignments of biomolecules. The 2D NOESY-WaterControl map of BPTI showed strong bound water and exchangeable proton signals in ω1 but these signals were absent in ω2, indicating the possibility of using the new sequence to discriminate bound water and exchangeable proton resonances from non-labile proton resonances with similar chemical shifts to water.  相似文献   

10.
The novel hybrid duplex alpha-5'-d[TACACA]-3'.beta-5'-r[AUGUGU]-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the "S" type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.  相似文献   

11.
When used in concert, one-bond carbon-carbon correlations, one-bond and multiple-bond proton-carbon correlations, and multiple-bond proton-nitrogen correlations, derived from two-dimensional (2D) NMR spectra of isotopically enriched proteins, provide a reliable method of assigning proton, carbon, and nitrogen resonances. In contrast to procedures that simply extend proton assignments to carbon or nitrogen resonances, this technique assigns proton, carbon, and nitrogen resonances coordinately on the basis of their integrated coupling networks. Redundant spin coupling pathways provide ways of resolving overlaps frequently encountered in homonuclear 1H 2D NMR spectra and facilitate the elucidation of complex proton spin systems. Carbon-carbon and proton-carbon couplings can be used to bridge the aromatic and aliphatic parts of proton spin systems; this avoids possible ambiguities that may result from the use of nuclear Overhauser effects to assign aromatic amino acid signals. The technique is illustrated for Anabaena 7120 flavodoxin and cytochrome c-553, both uniformly enriched with carbon-13 (26%) or nitrogen-15 (98%).  相似文献   

12.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

13.
31p-1H and 1H-1H chemical shift correlation spectroscopy are jointly used for providing a complete assignment of sugar proton (except H5' and H5") and phosphorus resonances in the double stranded oligonucleotide d (ATGCAT)2. In contrast to previous methods the specific assignment of overcrowded H5' H5" proton resonances is not required. Using the H3'-P coupling and also the long range H4'-P coupling, this quite general method can be easily implemented on intermediate field spectrometer. The present results pave the way to the 1H and 31P resonance assignment of longer double-stranded oligonucleotides.  相似文献   

14.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

15.
In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated. It is concluded that the indole ring of the tryptophan residue probably stacks on top of the 3'-terminal guanine base of both duplexes, but not on the nucleic acid bases next to the apurinic (AP) site.  相似文献   

16.
17.
18.
The exchangeable amide protons of hyaluronic acid (HA) oligosaccharides and a higher-molecular-weight segment dissolved in H2O at pH 2.5 or 5.5 were examined by H NMR spectroscopy at 250 MHz. The HA segment preparation showed a single amide resonance, near the chemical shift for the amide proton of the monosaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose (beta-GlcNAc). Smaller HA oligosaccharides showed two or three separate amide proton resonances, corresponding in relative peak area to interior or end GlcNAc residues. The interior GlcNAc amide resonance occurred at the same chemical shift as the single resonance of the HA segment. For the end GlcNAc residues, linkage to D-glucuronopyranose (GlcUA) through C1 resulted in an upfield shift relative to the beta-anomer of GlcNAc, whereas linkage through C3 resulted in a downfield shift relative to the corresponding anomer of GlcNAc. These chemical-shift perturbations appeared to be approximately offsetting in the case of linkage at both positions. The amide proton vicinal coupling constant (ca. 9 Hz) was found to be essentially independent of chain length, residue position, or solution pH. These data favor a nearly perpendicular orientation for the acetamido group with respect to the sugar ring, little affected by linkage of GlcNAc to GlcUA. No evidence for the existence of a stable hydrogen bond linking the amide proton with the carboxyl(ate) oxygen of the adjacent uronic acid residue was found. The amide proton resonances for chondroitin, chondroitin 4-sulfate, and dermatan sulfate were compared to that of HA. The chemical shifts of these resonances deviated no more than 0.1 ppm from that of HA. A small dependence on the identity of the adjacent uronic acid residue was noted, based on the observation of two resonances for dermatan sulfate.  相似文献   

19.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

20.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号