首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bovine viral diarrhea virus (BVDV) replicates in embryo co-culture systems and remains associated with developing IVF bovine embryos, despite washing and trypsin treatment. Previous research demonstrated that 2-(4-[2-imidazolinyl]phenyl)-5-(4-methoxyphenyl)furan (DB606) inhibits replication of BVDV in cultured cells. The objective of this study was to evaluate the capability of IVF embryos to develop into normal, weaned calves after exposure to antiviral concentrations of DB606 during IVC. Oocytes were obtained from cows via transvaginal, ultrasound-guided follicular aspiration. Presumptive zygotes (n = 849) that resulted from fertilization of these oocytes were cultured for 7 d in medium supplemented with 0.4 microM DB606 or medium lacking antiviral agent. All blastocysts (n = 110) were transferred individually into the uterus of a synchronized recipient. The pregnancy status of recipients was determined using transrectal ultrasonography at 21-23 d after embryo transfer. Additional pregnancies as controls (n = 21) were initiated by natural breeding. Developing fetuses and resulting calves were evaluated every 27-34 d. Blastocyst development, pregnancies per transferred embryo, pregnancies maintained per pregnancies established, gestation length, gender ratio, birth weights, viability of neonates, complete blood counts, and serum chemistry profiles at 3 mo of age and adjusted 205 d weaning weights were compared for research treatments. Development to weaning after exposure to DB606 did not differ significantly from controls. In conclusion, bovine embryo cultures can be safely supplemented with antiviral concentrations of DB606; addition of DB606 agent might prevent viral transmission if BVDV were inadvertently introduced into the embryo culture system.  相似文献   

2.
Bovine viral diarrhea virus (BVDV) can associate with in vitro fertilized (IVF) bovine embryos despite washing and trypsin treatment. An antiviral compound, DB606 (2-(4-[2-imidazolinyl]phenyl)-5-(4-methoxyphenyl)furan), inhibits the replication of BVDV in bovine uterine tubal epithelial cells, Madin Darby bovine kidney cells, and fetal fibroblast cells. As well, DB606 in in vitro culture medium does not affect embryonic development. Antiviral-treated-IVF embryos placed into recipients developed into clinically normal calves. The objective of this project was to determine if these resultant heifer calves were capable of reproducing. Seven heifers from each of the treatment groups (natural breeding, IVF embryo, and IVF embryo cultured in DB606) of the previous study were used. At 20-27 months of age, the heifers were exposed to a fertile bull in a single pasture during a 63 d breeding season. Five of the seven heifers originating from natural breeding were pregnant 35 d after removal of the bull and calved. All of the heifers resulting from transfer of untreated IVF embryos were pregnant at 35 d; however, one aborted the fetus at 5-7 months of gestation. All of the heifers derived from transfer of IVF embryos cultured in DB606 were pregnant and calved. Offspring from dams of all treatment groups were clinically normal at birth. Adjusted 205 d weaning weights were not significantly different among the offspring of the treated and untreated dams. These results indicate that culture of bovine-IVF embryos in DB606 does not impair future reproductive capacity of resulting heifers.  相似文献   

3.
In previous studies, bovine viral diarrhea virus (BVDV) remained associated with IVF embryos after viral exposure and washing. However, uterine tubal cells (UTC) were not infected when exposed embryos were washed and individually co-cultured with them. The objective of this study was to evaluate quantity and infectivity of embryo-associated virus and antiviral influence of a blastocyst as possible explanations for failure to infect the UTC in vitro. Morulae and blastocysts were produced in vitro and washed. A portion of the embryos were incubated for 2 h in medium containing 10(6) to 10(8) cell culture infective doses (50%, CCID50) of a genotype I, noncytopathic BVDV per milliliter and then washed again. Virus isolation was attempted on sonicated negative (virus unexposed) and positive (virus exposed) control embryo groups after washing. The influence of quantity and infectivity of embryo-associated virus was evaluated by transferring exposed, washed embryo groups (2, 5, and 10 embryos/group) or sonicate fluid of exposed, washed, sonicated embryo groups (2, 5, and 10 embryos/group) to cultures containing bovine UTC in IVC medium that was free of BVDV neutralizing activity. The antiviral influence of an embryo was evaluated by adding 1 to 10(5) CCID50 of BVDV to UTC in the presence or absence of a single unexposed blastocyst in IVC medium. After 2 d in co-culture, the UTC, IVC medium and washed embryos (when present) were tested separately for the presence of BVDV using virus isolation. Virus was isolated from sonicate fluids of all positive but no negative controls. Virus was not isolated from any UTC following 2 d of culture with virally exposed groups of intact embryos. However, virus was isolated from UTC cultured with sonicate fluids from some groups of 5 (60%) and 10 (40%) embryos. Infective virus also remained associated with some groups of 2 (20%), 5 (40%) and 10 (60%) intact embryos after 48 h of post-exposure culture. Finally, primary cultures of UTC were more susceptible to infection with BVDV in the absence of a blastocyst (P = 0.01). Results indicate that insufficient quantity and reduced infectivity of embryo-associated virus as well as an antiviral influence of intact IVF blastocysts may all contribute to failure of embryo-associated virus to infect UTC in vitro.  相似文献   

4.
5.
In previous experiments, zona pellucida (ZP)-intact in vitro-produced (IVP) embryos incubated for 1 hr with 10(6.3) TCID(50)/ml bovine herpes virus-1 (BHV-1), 10(5.3) TCID(50)/ml cytopathic (CP) bovine viral diarrhea virus (BVDV) or 10(5.3) TCID(50)/ml noncytopathic (NCP) BVDV showed no signs of virus replication or embryonic degeneration. The aims of the present study were to investigate whether a prolonged presence (24 hr or 8 days) of 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml BVDV in an in vitro embryo production system affected the rate of cleavage and embryonic development of ZP-intact embryos, and to point out eventual causes of adverse effects. When virus was present in each step of an IVP system, significantly lower rates of cleavage and blastocyst formation of virus-exposed embryos were observed, in comparison with control embryos (P < 0.01). When embryos were only exposed to virus during the in vitro fertilization (IVF), the rates of cleavage and blastocyst formation were significantly affected. The introduction of BHV-1 or BVDV during in vitro maturation (IVM) or in vitro culture (IVC) resulted only in significantly lower rates of blastocyst (P < 0.01). In all experiments, virus replication was not detected in the embryonic cells. On the other hand, virus replication was clearly demonstrated in oviductal cells in the co-culture system, resulting in a degeneration of these cells. In an additional experiment, synthetic oviduct fluid (SOF) without somatic cells was used as an alternative culture system. Even when SOF-embryos were exposed to 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml CP, and NCP BVDV, the rates of blastocyst formation of the BHV-1-, CP-, and NCP BVDV-exposed embryos were not different from the unexposed control embryos, 23%, 24%, and 24%, respectively, vs. 27%. Taken together, it can be concluded that the virus-induced adverse effects on embryonic development in conventional co-cultures were due to changes in the embryonic environment caused by infection of oviductal cells.  相似文献   

6.
Retinoids are recognized as important regulators of vertebrate development, cell differentiation, and tissue function. Previous studies, performed both in vivo and in vitro, indicate that retinoids influence several reproductive events, including follicular development, oocyte maturation and early embryonic development. The present study evaluated in vitro effects of retinol addition to media containing maturing bovine oocytes and developing embryos in both a low oxygen atmosphere (7%) and under atmospheric oxygen conditions (20%). In the first experiment, abbatoir collected bovine oocytes were matured in the presence or absence of varying concentrations of retinol. After a 22–24 hour maturation period the oocytes were fertilized, denuded 18 hours later and cultured in a modified synthetic oviductal fluid (mSOF) in a humidified atmosphere at 38.5 degrees C, 5% CO2, 7% O2 and 88% N2. Cleavage rates did not differ among control and retinol-treated oocytes in all three experiments. Addition of 5 micromolar retinol to the maturation medium (IVM) tended (p < 0.07) to increase blastocyst formation (blastocyst/putative zygote; 26.1% +/- 2.2%) compared to the controls (21.9% +/- 1.9%). Further analysis revealed when blastocyst development rates fell below 20% in the control groups, 5 micromolar retinol treatment dramatically improved embryonic development, measured by blastocyst/putative zygote rate (14.4 +/- 2.1 vs 23.7 +/- 2.5; p < 0.02). The 5 micomolar retinol treatment also enhanced the blastocyst/cleaved rate by nearly 10% (23.7% vs 34.6%; p < 0.02). In the second and third experiments addition of 5 micromolar retinol to the embryo culture medium (IVC) under low oxygen conditions did not significantly improve cleavage or blastocyst rates, but 5 micromolar retinol significantly increased blastocyst development under 20% O2 conditions (p < 0.001). These studies demonstrate that supplementation of 5 micromolar retinol to the maturation medium may improve embryonic development of bovine oocytes indicated by their increased blastocyst rate. A significant improvement in the blastocyst development with the 5 micromolar retinol treatment under atmospheric conditions suggests a beneficial antioxidant effect during embryo culture.  相似文献   

7.
Introduction of bovine viral diarrhea virus (BVDV) with cumulus-oocyte-complexes (COCs) from the abattoir is a concern in the production of bovine embryos in vitro. Further, International Embryo Transfer Society (IETS) guidelines for washing and trypsin treatment of in-vivo-derived bovine embryos ensure freedom from a variety of pathogens, but these procedures appear to be less effective when applied to IVF embryos. In this study, COCs were exposed to virus prior to IVM, IVF and IVC. Then, virus isolations from cumulus cells and washed or trypsin-treated nonfertile and degenerated ova were evaluated as quality controls for IVF embryo production. The effect of BVDV on rates of cleavage and development was also examined. All media were analyzed prior to the study for anti-BVDV antibody. Two approximately equal groups of COCs from abattoir-origin ovaries were washed and incubated for 1 h in minimum essential medium (MEM) with 10% equine serum. One group was incubated in 10(7) cell culture infective doses (50% endpoint) of BVDV for 1 h, while the other was incubated without virus. Subsequently, the groups were processed separately with cumulus cells, which were present throughout IVM, IVF and IVC. Cleavage was evaluated at 4 d and development to morulae and blastocysts at 7 d of IVC. After IVC, groups of nonfertile and degenerated ova or morulae and blastocysts were washed or trypsin-treated, sonicated and assayed for virus. Cumulus cells collected at 4 and 7 d were also assayed for virus. Anti-BVDV antibody was found in serum used in IVM and IVC but not in other media. A total of 1,656 unexposed COCs was used to produce 1,284 cleaved embryos (78%), 960 embryos > or = 5 cells (58%), and 194 morulae and blastocysts (12%). A total of 1,820 virus-exposed COCs was used to produce 1,350 cleaved embryos (74%), 987 embryos > or = 5 cells (54%), and 161 morulae and blastocysts (9%). Rates of cleavage (P = 0.021), cleavage to > or = 5 cells (P = 0.026) and development to morula and blastocyst (P = 0.005) were lower in the virus-exposed group (Chi-square test for heterogeneity). No virus was isolated from any samples from the unexposed group. For the exposed group, virus was always isolated from 4- and 7-d cumulus cells, from all washed nonfertile and degenerated ova (n = 40) and morulae and blastocysts (n = 57) and from all trypsin-treated nonfertile and degenerated ova (n = 80) and morulae and blastocysts (n = 91). Thus, virus persisted in the system despite the presence of neutralizing antibody in IVM and IVC media, and both washing and trypsin treatment were ineffective for removal of the virus. Presence of virus in 4- and 7-d cumulus cells as well as in nonfertile and degenerated ova were good indicators of virus being associated with morulae and blastocysts.  相似文献   

8.
9.
Recently, the activity of cathepsins B was found to be correlated inversely with the developmental competence of bovine oocytes. In this study, we investigated (1) the role of intracellular cathepsin B expression and developmental competence as well as the quality of bovine preimplantation embryos, and (2) the effect of cathepsin B inhibitor (E-64) during in vitro culture (IVC) on the development and quality of bovine embryos. After in vitro fertilization (IVF) followed by IVC for 7 days, good and poor quality embryos classified by morphology and developmental rate on days 2, 4, and 7 were assessed for cathepsin B expression and activity. To investigate the effect of cathepsin B inhibition on embryonic development, putative zygotes were cultured with or without E-64, followed by evaluation of cleavage and blastocyst rates on days 2 and 7, respectively. Embryonic quality was evaluated by both TUNEL staining and total cell number in day-7 blastocysts. In each developmental stage, cathepsin B expression and activity were significantly higher in poor quality embryos than good quality ones. Moreover, addition of E-64 during IVC significantly increased both the blastocyst rate and the total cell number. TUNEL staining revealed that inhibition of cathepsin B significantly decreased the number of apoptotic nuclei in day-7 blastocysts. These results indicate that cathepsin B activity can be useful as a marker for inferior quality embryos. Moreover, inhibition of cathepsin B greatly improves the developmental competence of preimplantation embryos and increases the number of good quality embryos.  相似文献   

10.
The growing application of in vitro embryo production systems that utilize slaughterhouse tissues of animals of unknown health status conveys the risk of disease transmission. One pathogen of concern in this regard is bovine viral diarrhea virus (BVDV), and the objective of this study was to investigate the effect of BVDV on in vitro embryonic development. A bovine in vitro embryo production system was experimentally infected with BVDV at 2 stages: prior to in vitro maturation by incubating cumulus-oocyte complexes (COC) with virus (strain Pe515; titer 10(6.2) tissue culture infective dose (TCID)50/mL) or vehicle for 2 h, and then during in vitro culture by the use of BVDV infected granulosa cells. Exposure to BVDV throughout in vitro production reduced cleavage rates (P = 0.01) but increased (P = 0.05) the number of embryos that reached the 8-cell stage when expressed as a percentage of cleaved oocytes. Blastocyst yield was increased by the presence of virus when expressed as a proportion of oocytes (P = 0.0034) or of those cleaved (P < 0.0001). The percentage of total blastocyst yield on Days 7, 8 and 9 for the control and virus treatments was 20, 51, 29 and 29, 41, and 29%, respectively, indicating that the rate of blastocyst development was nonsignificantly faster in the virus-treated group (P = 0.06). These results indicate that the presence of non-cytopathogenic BVDV in an in vitro production system may reduce cleavage rates but allow those cleaved to develop to blastocysts at a higher rate.  相似文献   

11.
As part of a program to study the feasibility of using embryo transfer to control disease, initial experiments were undertaken to determine the virus susceptibility of early embryos. Two hundred and ninety-three preimplantation bovine embryos (16-cell to blastocyst stage) were exposed to either akabane virus (AV), bluetongue virus (BTV) or bovine viral diarrhea virus (BVDV). Two hundred and thirty-seven of these embryos were then cultured for 24-48 hours in order to determine whether the virus had any effect on embryonic development and to allow viral replication to occur. No infectious virus was isolated from any of the embryos and the in vitro development of virus exposed embryos proceeded normally. In addition, twenty-nine eggs/embryos isolated from donors that were seropositive to BVDV were found to be uninfected with this virus.  相似文献   

12.
A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.  相似文献   

13.
Early research indicated that bovine viral diarrhea virus (BVDV) would not adhere to zona pellucida-intact (ZP-I), in vivo-derived bovine embryos. However, in a recent study, viral association of BVDV and in vivo-derived embryos was demonstrated. These findings raised questions regarding the infectivity of the embryo-associated virus. The objectives of this study were to evaluate the infectivity of BVDV associated with in vivo-derived bovine embryos through utilization of primary cultures of uterine tubal cells (UTC) as an in vitro model of the uterine environment and to determine if washing procedures, including trypsin treatment, were adequate to remove virus from in vivo-derived embryos. One hundred and nine ZP-I morulae and blastocysts (MB) and 77 non-fertile and degenerated (NFD) ova were collected on day 7 from 34, BVDV-negative, superovulated cows. After collection, all MB and NFD ova were washed according to International Embryo Transfer Society (IETS) standards and exposed for 2h to approximately 10(6) cell culture infective doses (50% endpoint) per milliliter of viral strain SD-1. Following exposure, some groups of <10 MB or NFD ova were washed in accordance with IETS standards. In addition, an equivalent number of MB and NFD ova were subjected to IETS standards for trypsin treatment. Subsequently, NFD ova were immediately sonicated and sonicate fluids were assayed for presence of virus, while individual and groups of MB were placed in microdrops containing primary cultures of UTCs and incubated. After 3 days, embryos, media, and UTCs were harvested from each microdrop and assayed for BVDV. Virus was detected in the sonicate fluids of 56 and 43% of the groups of NFD ova that were washed and trypsin-treated, respectively. After 3 days of microdrop culture, virus was not detected in media or sonicate fluids from any individual or groups of MB, regardless of treatment. However, virus was detected in a proportion of UTC that were co-cultured with washed groups of MB (30%), washed individual MB (9%) and trypsin treated individual MB (9%), but no virus was detected in the UTC associated with groups of trypsin-treated embryos. In conclusion, virus associated with developing embryos was infective for permissive cells. Further, the quantity of virus associated with a proportion of individual embryos (both washed and trypsin treated) was sufficient to infect the UTC. In light of these results, an attempt should be made to determine if the quantity of a high-affinity isolate of BVDV associated with an individual embryo would infect recipients via the intrauterine route.  相似文献   

14.
Aiming to standardize in vitro production of bovine embryos and to obtain supplements to replace serum in culture media, this study evaluated the nuclear maturation kinetics and embryonic development in bovine after in vitro maturation (IVM) and culture (IVC) with several macromolecules (animal origin: bovine serum albumin (BSA), fetal calf serum (FCS); synthetic: polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), Ficoll, and Knockout) at two oxygen tensions (20% and 5% O(2)). Regarding nuclear kinetics, neither the presence of the expected stage (metaphase I, transition anaphase to telophase, and metaphase II) at each evaluation moment (6, 18, and 24?h after IVM, respectively) nor the accelerated polar body emission (at 18?h after IVM) related developmental competence to blastocyst stage when different supplements were compared. Independently of supplement, cleavage rates at 20% O(2) (61.6-79.2%) were higher than at 5% O(2) (38.9-58.7%). At 20% O(2), higher blastocyst and hatching rates, respectively, were obtained in treatments BSA, FCS, Knockout, and control group (IVM with FCS and IVC with BSA + FCS, 14.0-23.5% and 6.8-15.4%) in comparison to PVA, PVP, and Ficoll (0%). The same was observed at 5% O(2) for blastocyst rates with BSA, FCS, Knockout, and control (5.4-16.8%) and for hatching rates with BSA, FCS, and control (2.0-11.1%). We can conclude that producing bovine embryos at 20% O(2) during the entire IVP process resulted in higher developmental rates than at 5% O(2). In addition, while defined macromolecules PVA, PVP, and Ficoll were not suitable for embryonic development, the synthetic serum Knockout was able to replace serum and albumin for IVP in bovine at 20% O(2).  相似文献   

15.
The effect of high concentrations of cryoprotectants on the passage of bovine viral diarrhea virus (BVDV) through the zona pellucida (ZP) of intact bovine embryos during the pre-freezing step of cryopreservation was investigated in a series of experiments. In vitro fertilized (IVF) embryos at the blastocyst stage were exposed to 10(6) TCID50 BVDV (non-cytopathic NY-1 strain) in a 30% suspension of either ethylene glycol, glycerol, DMSO, or 2 M sucrose in physiological saline for 10 min at 20 degrees C. Subsequently, the embryos were washed free of residual unbound viral particles, and the ZP of some embryos were removed by micromanipulation. Groups of ZP-intact embryos, ZP-free embryonic cells and their respective ZP were then tested separately for the presence of virus. The infectious virus was detected in association with 81% (17/21) of samples containing non-micromanipulated ZP-intact embryos which were exposed to the virus and cryoprotectants and then washed 10 times and in 83% (43/53) of the samples containing only ZP from micromanipulated embryos (P > 0.05). The virus was not found in the samples containing the corresponding embryonic cells of embryos exposed previously to the virus and cryoprotectants. It was concluded that the transfer of embryos from the isotonic PBS solution into a highly hypertonic cryoprotectant solution did not cause the passage of BVDV through ZP and its entry to embryonic cells.  相似文献   

16.
Ali AA  Bilodeau JF  Sirard MA 《Theriogenology》2003,59(3-4):939-949
Antioxidants may be beneficial additives to synthetic culture media because these well defined media lack serum or other macromolecules that serve as reactive oxygen species scavengers. In this study, three separate experiments were performed to determine the effects of antioxidants on the development of oocytes to the morula and blastocyst stage when added during in vitro maturation (IVM) of bovine oocytes, during in vitro fertilization (IVF), and during embryo culture for the first 72 h of the development period. Bovine oocytes were matured, fertilized (under 20% O(2)), and embryos were cultured (under 7% O(2)) in defined conditioned medium in vitro with or without supplementation with the antioxidant cysteine, N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD). Significant improvements in the proportion of oocytes undergoing morula and blastocyst development (33.3% versus 20.3%, P<0.05) were achieved when cysteine (0.6 mM) was added to the maturation medium as compared to control medium without antioxidant supplementation. However, the addition of NAC (0.6mM), catalase (5 or 127 U/ml) or SOD (10 or 1000 U/ml) to the maturation medium did not improve the proportion of oocytes undergoing morula and blastocyst development. During the IVF period, addition of antioxidants (cysteine or NAC 0.6mM, catalase 127U/ml, SOD 100U/ml) significantly reduced the subsequent rate of bovine embryo development to the morula and blastocyst stage (P<0.05). In a defined medium for embryo culture (7% O(2)), the addition of cysteine improved the development of bovine embryos while NAC, catalase and SOD had no positive effect on embryonic development. Our study showed that medium supplementation with cysteine during IVM and in vitro culture (IVC) improved the rate of bovine embryo development, in contrast to extracellular antioxidants like catalase and SOD that caused no improvement.  相似文献   

17.
In this study, presumptive bovine zygotes were subjected to two consecutive 24-h cycles of heat treatment during the first 48 h (Experiment I) of in vitro culture (IVC) or 24h of heat treatment during the fourth day of IVC (Experiment II). In Experiment I, the percentage of heat treatment zygotes that developed to > or =8-cell stage embryos after 72 h IVC was 2.0% (n = 459) compared with 28.4% (n = 458) for the control zygotes (P<0.001). The subsequent yield of morulae or blastocysts after 144 h IVC for the heat treatment and control groups was 0.9% (n = 457) and 12.3% (n = 456) (P<0.001), respectively. These results demonstrate that heat treatment during the first 48 h of IVC significantly impaired embryo development. In Experiment II, the percentage of zygotes that developed into morulae and blastocysts following heat treatment during the fourth day of IVC was 4.5% (n = 468) compared to 10.5% (n = 456) for the control group (P<0.001). This study has demonstrated that in vitro heat stress during the critical stage of early embryo development significantly increases the incidence of early embryonic mortality.  相似文献   

18.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

19.
The objectives of this study were 1) to measure cleavage, blastocyst formation, and blastocyst hatching after in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of oocytes aspirated from pregnant versus nonpregnant cows, and 2) to compare embryo development in co-culture with bovine oviductal epithelial cells versus cumulus cells. No differences in cleavage (38 versus 40%), blastocyst formation (13 versus 13%), or blastocyst hatching (53 versus 51%) were observed for in vitro-matured, fertilized, and cultured oocytes from pregnant versus nonpregnant cows, respectively (P > 0.05), indicating that nonpregnant and early-pregnant cows are equally acceptable donors of oocytes for IVM/IVF/IVC procedures. Cleavage (36 versus 40%), blastocyst formation (11 versus 12%), and blastocyst hatching (50 versus 55%) were not different for embryos co-cultured with oviductal epithelial cells versus cumulus cells (P > 0.05). Thus, equivalent embryo development can be obtained with co-culture systems commonly used for in vitro-derived bovine embryos. These results help to define variables that affect comparison of results across laboratories and that are relevant to the practical application of IVM/IVF/IVC procedures to cattle.  相似文献   

20.
In vitro embryo production has been used extensively in research and is now offered as a commercial service, yet the hazards of introducing specific infectious agents into in vitro embryo production systems have not been completely defined. The introduction of noncytopathic bovine viral diarrhea virus (BVDV) is a special concern. One objective of this study was to determine if noncytopathic BVDV-infected uterine tubal cells in IVF and IVC systems affected the rate of cleavage and development. An additional objective was to determine if either degenerated ova or embryos produced in the presence of the infected cells had virus associated with them after washing. Follicular oocytes (n = 645) collected from slaughterhouse ovaries were matured and fertilized in vitro, and presumptive zygotes were cultured for 7 d. Primary cultures of uterine tubal cells for use during IVF and IVC were divided into 2 groups. One-half of the cultures was infected with noncytopathic BVDV while the other half was not exposed to the virus. Approximately equal groups of mature oocytes were inseminated, and the presumptive zygotes were cultured with infected or noninfected uterine tubal cells. After 7 d in IVC, zona pellucida-intact (ZP-I) morulae and blastocysts and degenerated ova were washed and assayed for the presence of infectious virus. Infections of uterine tubal cells were not apparent and did not reduce rates of cleavage and development (P > 0.05; Chi-square test for heterogeneity). After washing, BVDV was isolated at a significantly higher rate from groups of virus-exposed degenerated ova (79%) than from individual virus-exposed morulae and blastocysts (37%; P = 0.0002; Mantel-Haenszel summary, Chi-square).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号