首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystem-level nutrient dynamics during decomposition are often estimated from litter monocultures. If species effects are additive, we can statistically predict nutrient dynamics in multi-species systems from monoculture work, and potential consequences of species loss. However, if species effects are dependent on interactions with other litter species (that is, non-additive), predictions based on monoculture data will likely be inaccurate. We conducted a 3-year, full-factorial, mixed-litter decomposition study of four dominant tree species in a temperate forest and measured nitrogen and phosphorus dynamics to explore whether nutrient dynamics in mixtures were additive or non-additive. Following common approaches, we used litterfall data to predict nutrient dynamics at the ecosystem-level. In mixtures, we observed non-additive effects of litter mixing on nutrient dynamics: the presence of nutrient-rich species in mixture facilitated nutrient release, whereas nutrient-poor species facilitated nutrient retention. Fewer nutrients were released from mixtures containing high-quality litter, and more immobilized from mixtures containing low-quality litter, than predicted from monocultures, creating a difference in overall nutrient release between predicted and actual dynamics in litter mixtures. Nutrient release at the ecosystem-level was greatly overestimated when based on monocultures because the effect of species interactions on nutrient immobilization was not accounted for. Our data illustrate that the identity of species in mixtures is key to their role in non-additive interactions, with repercussions for mineral nutrient availability and storage. These results suggest that predictions of ecosystem-level nutrient dynamics using litter monoculture data likely do not accurately represent actual dynamics because the effects of litter species interactions are not incorporated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
森林群落物种组成对凋落物组成的影响   总被引:2,自引:0,他引:2  
在海南铜鼓岭山麓灌木林和季雨矮林固定大样地的基础上,通过收集凋落物,比较两林型的凋落物数量及其器官组成、凋落叶物种组成,探讨森林群落物种组成与凋落物组成的关系。结果表明:(1)两林型的凋落物总量及其器官组成不同,山麓灌木林(6.227 t/hm~2)比季雨矮林的年凋落量大(5.636 t/hm~2);凋落叶是凋落物的主要组成部分,能反映凋落物的凋落情况。(2)山麓灌木林凋落物优势种和主要物种为贡甲、林仔竹、橄树等15个物种,凋落叶总量占77.72%;季雨矮林的凋落物优势种和主要物种为方枝蒲桃、肖蒲桃、贡甲等17个物种,凋落叶总量占71.84%;山麓灌木林中凋落物优势种和主要物种的叶凋落量与其组成物种的株数、总断面积、树冠面积极显著正相关而季雨矮林的凋落物优势种和主要物种的叶凋落量与其组成物种的株数极显著正相关。山麓灌木林中两者的Jaccard相似性系数为20%,季雨矮林为25.93%,两林型的群落物种组成与凋落叶物种组成不一致,热带森林群落优势种不一定是凋落物优势种。  相似文献   

3.
K. Li  J. Ren  Y. Xing  Z. Zhang  J. Ma  Y. Guo  L. Huang 《Animal genetics》2009,40(6):963-966
To detect quantitative trait loci (QTL) for litter size related traits, the total number of born piglets (TNB), the number of born alive piglets (NBA), the number of stillborn piglets (NSB) and the number of mummies (NM) at the first parity were recorded in 299 F2 sows in a White Duroc × Chinese Erhualian intercross resource population. A whole genome scan was performed with 183 microsatellites distributed across 19 porcine chromosomes in the resource population, and the QTL analysis was performed with a least-squares method. A 5% genome-wide significant QTL was detected at 88 cM on pig chromosome (SSC) 15 for NBA, which also showed suggestive effect on TNB. In addition, four suggestive QTL were detected on SSC 6, 7, 8 and 15 for TNB, NBA or NSB. Two of the five QTL detected showed accordance with previous reports. No QTL was found for NM.  相似文献   

4.
Leaves of 4 species (Quercus robur, Castanea sativa, Corylus avellana and Pinus pinaster) were incubated in a forested headwater stream using bags (1 mm and 5 mm net size) and trays (5 mm net size). The type of treatment influenced litter breakdown rates. Differences in loss rates were noted between Pinus and the deciduous species, and between Quercus and Corylus. Numbers of invertebrates per sample and per gram leaf AFDW generally increased with exposure time. The taxa colonizing the four leaf species were largely identical but colonization was greatly dependent on type of treatment. Taxa richness (Hmax) increased with time. Differences between Hmax and specific diversity (H) were high, due to the importance of Chironomids. Collectors and scrapers, among other functional groups, exhibited the highest densities. Differences in loss rates between fine and coarse treatments were related to differences in shredder biomass, corroborating the importance of this functional group in litter processing.  相似文献   

5.
Allochthonous (e.g., riparian) plant litter is among the organic matter resources that are important for wetland ecosystems. A compact canopy of free‐floating vegetation on the water surface may allow for riparian litter to remain on it for a period of time before sinking to the bottom. Thus, we hypothesized that canopy of free‐floating vegetation may slow decomposition processes in wetlands. To test the hypothesis that the retention of riparian leaf litter on the free‐floating vegetation in wetlands affects their subsequent decomposition on the bottom of wetlands, a 50‐day in situ decomposition experiment was performed in a wetland pond in subtropical China, in which litter bags of single species with fine (0.5 mm) or coarse (2.0 mm) mesh sizes were placed on free‐floating vegetation (dominated by Eichhornia crassipes, Lemna minor, and Salvinia molesta) for 25 days and then moved to the pond bottom for another 25 days or remained on the pond bottom for 50 days. The leaf litter was collected from three riparian species, that is, Cinnamomum camphora, Diospyros kaki, and Phyllostachys propinqua. The retention of riparian leaf litter on free‐floating vegetation had significant negative effect on the carbon loss, marginal negative effects on the mass loss, and no effect on the nitrogen loss from leaf litter, partially supporting the hypothesis. Similarly, the mass and carbon losses from leaf litter decomposing on the pond bottom for the first 25 days of the experiment were greater than those from the litter decomposing on free‐floating vegetation. Our results highlight that in wetlands, free‐floating vegetation could play a vital role in litter decomposition, which is linked to the regulation of nutrient cycling in ecosystems.  相似文献   

6.
Both nutrient cycling and nutrient relationships between mistletoe and host have been widely studied; yet it is unclear whether high nutrient concentrations commonly found in mistletoes affect rates of nutrient cycling. To address this question, we assessed 13 elements in the leaf litter of a temperate eucalypt forest in southern New South Wales, comparing concentrations from trees (Eucalyptus blakelyi, E. dwyeri, and E. dealbata) with and without the hemiparasitic mistletoe Amyema miquelii. Results were in accord with previous research on fresh leaves showing that concentrations of many elements were higher in the mistletoe than the host. This was not the case for all elements; most notably for N, where concentrations were significantly lower in the mistletoe. However, the return of all elements increased with mistletoe infection because of the combined effect of enrichment in mistletoe tissues and high rates of mistletoe litterfall. Annual returns of N and P in leaf litter increased by a factor of 1.65 and 3 respectively, with the greatest increase being for K by a factor of 43 in spring. These increased element returns were not significantly influenced by any changes in host leaf litter quality, as mistletoe infection was not found to affect host element concentrations. Mistletoe infection also altered the spatial and temporal distribution of element returns because of the patchy occurrence of mistletoes and extended period of mistletoe litterfall compared with the host. These findings provide a mechanistic explanation for the role of mistletoes as a keystone resource and, together with comparable results from root‐parasitic plants in boreal tundra and cool‐temperate grasslands, suggest that enhancing nutrient return rates may be a generalized property of parasitic plants.  相似文献   

7.
López  Eva S.  Pardo  Isabel  Felpeto  Nuria 《Hydrobiologia》2001,464(1-3):51-61
Litter processing was examined in autumn–winter and spring–summer in a second order stream in Galicia (NW Spain). We compared decay rate and nutrient dynamics of green leaves of several deciduous (riparian: Alnus glutinosa, Betula alba and Populus×canadensis; terrestrial: Castanea sativa, Quercus robur), and evergreen tree species (terrestrial: Pinus radiata and Eucalyptus nitens), in addition to ray-grass (Lolium perenne). In the autumn–winter period, the decay rates (–k) ranged between 0.0086 degree-days–1 for poplar, and 0.0019 degree-days–1 for birch leaves. Alder showed the most rapid breakdown in spring–summer (0.0124 degree-days–1), and pine the slowest (0.0016 degree-days–1). Deciduous species exhibited general higher processing rates than evergreen species and ray-grass. The initial nitrogen and phosphorus contents were higher in riparian species leaves and ray-grass, being higher in spring (2.28±0.14% and 0.24±0.04% of nitrogen and phosphorus, respectively) than in autumn (1.88±0.36% of nitrogen and 0.18±0.03% of phosphorus). A significant correlation coefficient was found only between mean nitrogen leaf packs contents during incubation and decay rates (r=0.61; p=0.012).In deciduous species, processing was faster during the spring–summer than in the autumn–winter period, which may be attributed to the greater nutritional value and less consistency of the leaves during this season. Within evergreen species, pine had a significantly faster processing rate in autumn, attributed in this study to greater physical fragmentation of the needles. Ray-grass and eucalyptus did not exhibit any seasonal differences in processing rate.During the spring–summer period, litterfall inputs are quantitatively less important than during the autumn–winter, but due to high retention and fast breakdown during the spring–summer, green inputs should contribute substantially to nutrient incorporation and cycling in benthic communities.  相似文献   

8.
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in‐stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse‐ and fine‐mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse‐mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter‐input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher‐quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower‐quality litter inputs. Birch litter decomposition rate in coarse‐mesh bags was best predicted by the same environmental variables as in fine‐mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.  相似文献   

9.
中国西南季风常绿阔叶林不同恢复阶段凋落物动态分析   总被引:1,自引:0,他引:1  
为探索季风常绿阔叶林不同恢复阶段群落凋落物产量及其动态变化规律,于云南普洱地区通过设置凋落物承接网并定期收集网内的凋落物,对中国西南季风常绿阔叶林区不同恢复阶段群落凋落物产量及其动态变化进行研究。结果表明:(1)不同恢复阶段季风常绿阔叶林年凋落物总量在8 133.1~8 798.3kg/hm2之间,年凋落物总量大小关系为恢复30年群落老龄林群落恢复40年群落。其中叶凋落量最高,其次为枝凋落量,两者贡献量超过总凋落量的3/4。(2)季风常绿阔叶林不同恢复阶段群落中凋落物随时间的动态变化趋势大致相同,2月份达到高峰值,随后逐渐减少,在9月份降至最低,随后又有所升高,为单峰或多峰曲线;在不同凋落物组分凋落量时间动态上,不同恢复阶段群落叶凋落量随月份变化均为单峰曲线;枝凋落量在恢复群落中为单峰曲线,而在老龄林中则为多峰曲线;皮凋落量随月份的变化在恢复30年及老龄林群落间均为单峰曲线,但在恢复40年群落中为平缓曲线,月份间变化不大;繁殖体凋落物在恢复30年及老龄林群落间均为多峰曲线,但在恢复40年群落中为单峰曲线;半分解物凋落量在恢复30年及老龄林群落中随月份呈单峰曲线,在恢复40年群落中则为多峰曲线。(3)在短刺栲、刺栲和红木荷3种优势物种中,短刺栲叶片年凋落量在所有群落中均最大(分别占恢复30年群落的53.93%、恢复40年群落的47.83%、老龄林的28.32%),红木荷次之(分别占恢复30年群落的8.45%、恢复40年群落的10.71%、老龄林的31.69%),刺栲最少(分别占恢复30年群落的6.1%、恢复40年群落的7.53%、老龄林的6.36%)。短刺栲叶凋落量随月份的变化在恢复群落中呈单峰曲线,而在老龄林中则呈现多峰曲线;红木荷在3种群落中则均为单峰曲线;刺栲则是在恢复30年及老龄林中呈单峰曲线,而在恢复40年群落中呈多峰曲线。  相似文献   

10.
 测定云南西双版纳热带季节雨林和哀牢山中山湿性常绿阔叶林优势种植物叶片及地表凋落物层的干重热值,分析并比较了两地群落类型热值的差异及其与地理条件的关系。植物叶片分为鲜叶和凋落叶,地表凋落物层分为新鲜凋落物层(L层)和腐叶层(F层)进行取样测量,所有样品在60℃烘干至恒重,样品热值采用Parr1261氧弹式热量计测量。结果表明:西双版纳的11种植物鲜叶和凋落叶干重热值的变化范围分别是14.595 3~19.863 9和14.046 7~19.884 0 kJ·g-1, L和F层的平均干重热值分别为17.419 6 和14.780 5 kJ·g-1;哀牢山的10种植物鲜叶和凋落叶干重热值的变化范围分别是17.805 1~21.525 3和17.893 4~21.436 7 kJ·g-1,L和F层的平均干重热值分别为19.208 4和17.494 7 kJ·g-1。两地植物鲜叶与凋落叶干重热值的大小顺序近似或一致,即植物鲜 叶干重热值越高,其凋落叶干重热值也越高;植物鲜叶与凋落叶干重热值的差值有正有负, 因物种而异;西双版纳凋落物L与F层之间的热值差值显著地大于哀牢山两层凋落物的热值差值,可能是由西双版纳凋落物的分解速率较快导致的;两地样品的平均干重热值的顺序为:鲜叶>凋落叶>L层>F层;将两地的相应样品对比发现,干重热值呈现为哀牢山>西双版纳,体现出高海拔>低海拔、高纬度>低纬度以及常绿阔叶林>热带季节雨林的特点。  相似文献   

11.
Abstract Allochtonous leaf litter is an important source of energy and nutrients for invertebrates in cave ecosystems. A change to the quality or quantity of litter entering caves has the potential to disrupt the structure and function of cave communities. In this study, we adopted an experimental approach to examine rates of leaf litter decomposition and the invertebrate assemblages colonizing native and exotic leaf litter in limestone caves in the Jenolan Caves Karst Conservation Reserve, New South Wales, Australia. We deployed traps containing leaf litter from exotic sycamore (Acer pseudoplatanus) and radiata pine (Pinus radiata) trees and native eucalypts (Eucalyptus spp.) in twilight zones (near the cave entrance) and areas deep within the caves for 3 months. Thirty‐two invertebrate morphospecies were recorded from the litter traps, with greater richness and abundance evident in the samples from the twilight zone compared with areas deep within the cave. Sycamore litter had significantly greater richness and abundance of invertebrates compared with eucalypt and pine litter in samples from the twilight zone, but there was no difference in richness or abundance among litter samples placed deep within the cave. Relative rates of decay of the three litters were sycamore > eucalypt > pine. We discuss the potential for the higher decomposition rates and specific leaf area in sycamores to explain their higher invertebrate diversity and abundance. Our findings have important implications for the management of exotic plants and the contribution of their leaf litter to subterranean ecosystems.  相似文献   

12.
马志良  高顺  杨万勤  吴福忠  谭波  张玺涛 《生态学报》2015,35(22):7553-7561
地处长江上游的四川盆地亚热带常绿阔叶林具有典型雨热同季的气候特点,季节性干湿交替可能显著影响凋落物分解,但迄今缺乏相应的报道。因此,采用凋落物分解袋法,研究了常绿阔叶林区最具代表性的马尾松(Pinus massoniana)、柳杉(Cryptomeria fortunei)、杉木(Cunninghamia lanceolata)、香樟(Cinnamomum camphora)、红椿(Toona ciliata)、麻栎(Quercus acutissima)等6种凋落叶在第1年不同雨热季节的分解特征。结果表明,经历1a的分解,6种凋落叶质量残留率大小顺序依次为:红椿(27.90%)柳杉(41.39%)杉木(48.93%)麻栎(49.62%)马尾松(68.82%)香樟(72.23%),6种凋落叶在不同干湿季节质量损失差异显著(P0.05)。阔叶树种在旱季(MRS、SRS和WRS)的质量损失显著高于针叶树种。雨季(ERS和LRS)对6种凋落叶质量损失的贡献率(69.73%—89.68%)均明显大于旱季(10.32%—30.27%)。6种凋落叶在不同时期中质量损失速率差异显著(P0.05),且6种凋落叶在雨季的质量损失速率明显高于旱季。相关分析结果表明,凋落叶质量损失及其速率均与降雨量和温度呈极显著(P0.01)正相关关系。凋落叶质量损失与初始C、木质素含量及C/N、木质素/N极显著(P0.01)负相关,与N含量极显著(P0.01)正相关。这些结果表明亚热带地区森林凋落物分解的质量损失主要发生在雨季,雨季温湿度的改变可显著影响凋落物分解过程。  相似文献   

13.
Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2‐induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi‐arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L?1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L?1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr?1 or 7.8±0.7 g m?2 yr?1 for 1998 litter; 18±3% yr?1 or 2.2±0.4 g m?2 yr?1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m?2 yr?1; elev. CO2: 35.0±1.1 g m?2 yr?1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m?2, elev. CO2: 13.3±3.4 g m?2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year‐to‐year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.  相似文献   

14.
To date, most research that has examined the effect of elevated atmospheric carbon dioxide concentration ([CO2]) on litter decomposition has focused on changes in the leaf litter quality of individual species. Results from California grasslands indicate that other CO2 responses may have greater consequences for decomposition rates. For instance, CO2-driven changes in either species dominance or patterns of biomass allocation would alter both the quality and the position of grassland litter. We review the results from studies in California grasslands to identify the mechanisms that affect grassland litter decomposition. We use a simple calculation that integrates the results of two studies to identify three mechanisms that have the potential to substantially alter decomposition rates as the atmospheric [CO2] rises. Received 16 January 2001; accepted 26 September 2001.  相似文献   

15.
Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.  相似文献   

16.
17.
There is high uncertainty surrounding the magnitude of current and future biodiversity loss that is occurring due to human disturbances. Here, we present a global meta‐analysis of experimental and observational studies that report 327 measures of change in species richness between disturbed and undisturbed habitats across both terrestrial and aquatic biomes. On average, human‐mediated disturbances lead to an 18.3% decline in species richness. Declines in species richness were highest for endotherms (33.2%), followed by producers (25.1%), and ectotherms (10.5%). Land‐use change and species invasions had the largest impact on species richness resulting in a 24.8% and 23.7% decline, respectively, followed by habitat loss (14%), nutrient addition (8.2%), and increases in temperature (3.6%). Across all disturbances, declines in species richness were greater for terrestrial biomes (22.4%) than aquatic biomes (5.9%). In the tropics, habitat loss and land‐use change had the largest impact on species richness, whereas in the boreal forest and Northern temperate forests, species invasions had the largest impact on species richness. Along with revealing trends in changes in species richness for different disturbances, biomes, and taxa, our results also identify critical knowledge gaps for predicting the effects of human disturbance on Earth's biomes.  相似文献   

18.
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface‐dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen‐related traits play a central role in tree composition effects on soil fauna and decomposition.  相似文献   

19.
季节性雪被对高山森林凋落物分解的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
季节性雪被可能对高山森林凋落物分解产生重要影响, 但一直没有深入的研究。该文采用凋落物分解袋法, 于2010-2012年雪被覆盖下几个关键时期(冻结初期、深冻期和融化期)以及生长季节, 研究了川西高山森林代表性树种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)和方枝柏(Sabina saltuaria)凋落叶在不同厚度冬季雪被下的分解动态。经过两年的分解, 不同雪被覆盖下岷江冷杉凋落物分解率为33.98%-39.55%, 红桦为46.49%-48.22%, 四川红杉为42.30%-44.93%, 方枝柏为40.34%-43.84%。相对于无雪被覆盖环境, 厚型雪被覆盖均小幅提高了4种凋落物两年的失重率(1.57%-5.57%)。3个针叶树种(岷江冷杉、四川红杉和方枝柏) Olson凋落物分解系数k均以厚型雪被覆盖最大, 薄型雪被覆盖最小, 而阔叶树种红桦分解系数k则表现为无雪被>薄型雪被>较厚型雪被>厚型雪被>中型雪被。尽管在第二年生长季中雪被对红桦凋落物分解的促进作用不明显, 但雪被覆盖明显促进了两年各个关键时期岷江冷杉、四川红杉和方枝柏凋落物的分解。第一年雪被期凋落物分解对当年分解总量的贡献达42.5%-65.5%, 季节性雪被变化明显改变了凋落物冬季分解格局, 对深冻期凋落物分解过程影响尤为显著。综上所述, 当前气候变化情景下冬季雪被的减少可能减缓该区森林凋落物分解过程, 但相对于易分解的阔叶凋落物, 针叶凋落物的响应特征可能更为强烈。  相似文献   

20.
The hypothesis of this study was that colonizers in decaying leaf litter prefer native species (Erythrina verna) to exotic ones (Eucalyptus camaldulensis and Protium heptaphyllum). Therefore, native species are expected to show higher breakdown rates, increased biomass, richness and density of invertebrate species, and increased biomass of decomposer fungi. Breakdown of leaf litter from these three species was assessed in an Atlantic Rain Forest stream. Four samples were collected during a period of 90 days and washed on a sieve to separate the invertebrates. Then, a series of leaf disks were cut to determine ash‐free dry mass and fungal biomass, and the remaining material was oven‐dried to determine the dry weight. Eucalyptus camaldulensis and E. verna showed higher breakdown rates than P. heptaphyllum, due to differences in leaf physical and chemical characteristics. The harder detritus (P. heptaphyllum) broke down more slowly than detritus with high concentrations of labile compounds (E. camaldulensis). The density of the invertebrates associated with detritus increased with time. There were no differences in density, taxonomic richness or biomass of invertebrates among the leaf types, which indicated that the invertebrates did not distinguish between exotic and native detritus. Fungal colonization varied among samples; E. camaldulensis showed the lowest ergosterol concentrations, mainly due to a high concentration of total phenolics. The detritus with the highest hardness value was colonized most slowly by fungi. These results showed that leaf breakdown in Atlantic Rain Forest streams could be affected either by changes in riparian vegetation, or by becoming more savanna‐like process due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号