首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine is an intermediate of the urea cycle in the liver. It is synthesized by the first four enzymes of the cycle, carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase, and argininosuccinate lyase, and is hydrolyzed to urea and ornithine by arginase I, forming the cycle. In endotoxemia shock, inducible nitric oxide (NO) synthase (iNOS) is induced in hepatocytes and arginine is utilized for NO production. Regulation of the genes for iNOS and the urea cycle enzymes was studied using lipopolysaccharide (LPS)-treated rat livers. When rats were injected intraperitoneally with LPS, iNOS mRNA was markedly induced. Cationic amino acid transporter-2 and C/EBPbeta mRNAs were also highly increased. In contrast, mRNAs for all the urea cycle enzymes except ornithine transcarbamylase were gradually decreased and reached 16-28% of controls at 12 h. However, all these enzymes remained unchanged at protein level up to 24 h. In light of these results, we suggest that synthesis of urea cycle enzymes is downregulated and that the protein synthetic capacity is directed to synthesis of proteins required for defense against endotoxemia.  相似文献   

2.
Regulation of nitric oxide production by arginine metabolic enzymes   总被引:15,自引:0,他引:15  
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, vascular smooth muscle cells, glial cells, neuronal PC12 cells, and pancreatic beta-cells. Cationic amino acid transporter (CAT)-2 is induced in activated macrophages but not in PC12 cells. On the other hand, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and II) are coinduced in lipopolysaccharide (LPS)-activated macrophages. These results indicate that NO production is modulated by the uptake, recycling, and degradation of arginine.  相似文献   

3.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Decreased availability of arginine and impaired production of NO (nitric oxide) have been implicated in the development of endothelial dysfunction. Citrulline formed by the NOS reaction is recycled to arginine by the citrulline-NO cycle, which is composed of NOS, argininosuccinate synthetase (AS), and argininosuccinate lyase. Therefore, we investigated the alterations of these enzymes in the aorta of streptozotocin (STZ)-induced diabetic rats. eNOS and AS mRNAs were increased by three- to fourfold 1-2 weeks after STZ treatment and decreased at 4 weeks. AL mRNA was weakly induced. Induction of eNOS and AS proteins was also observed. Cationic amino acid transporter (CAT)-1 mRNA remained little changed, and CAT-2 mRNA was not detected. The plasma nitrogen oxide levels were increased 1-2 weeks after STZ treatment and decreased at 4 weeks. Transforming growth factor-beta1 (TGF-beta1) mRNA in the aorta was also induced. TGF-beta1 induced eNOS and AS mRNAs in human umbilical vein endothelial cells but inhibited the proliferation of HUVEC. These results indicate that eNOS and AS are coinduced in the aorta in early stages of STZ-induced diabetic rats and that the induction is mediated by TGF-beta1. The results also suggest that TGF-beta1 works antiatherogenically at early stages of diabetes by increasing NO production, whereas prolonged elevation of TGF-beta1 functions atherogenically by inhibiting endothelial cell growth.  相似文献   

5.
To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.  相似文献   

6.
Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress.  相似文献   

7.
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.  相似文献   

8.
Ornithine carbamoyltransferase, argininosuccinate synthetase, argininosuccinate lyase, and arginase activity were measured in extracts from cotyledons of developing and germinating seeds of Pisum sativum L. The course of activity of these four urea cycle enzymes showed a similar pattern during seed development. The activity per cotyledon increased sharply initially and reached a maximum about 5 weeks after anthesis, when the relative water content of the seeds was about 60%. About 8 weeks after anthesis, the seeds were mature (air-dry) and had enzyme activities which were much lower. The activities of the enzymes differed considerably. Ornithine carbamoyltransferase showed the highest activity, followed in order of decreasing activity by arginase, argininosuccinate lyase, and finally argininosuccinate synthetase.

The course of the activity of the four enzymes was different during germination. Arginase activity increased sharply 7 hours after the onset of germination and remained at a constant level during the following days. Argininosuccinate synthetase activity decreased; the other enzymes showed a small increase in activity and a subsequent decrease. Results are discussed in relation to the regulation of the arginine metabolism during pea seed development and germination.

  相似文献   

9.
10.
The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.  相似文献   

11.
The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.  相似文献   

12.
目的:观察抗内毒素Fab’对严重烧伤早期肠源性内毒素血症小鼠肠组织中NO、iNOS、MDA水平的影响,探索防治烧伤脓毒症的新措施。方法:采用严重烧伤早期肠源性内毒素血症小鼠模型,分为烧伤组、治疗组及对照组,分别于6、12、24、48h4个时相点测定肠组织中NO、iNOS、MDA的浓度:结果:烧伤后肠组织中NO、iNOS、MDA水平均比正常对照组显著增高;治疗组肠组织中NO、iNOS、MDA水平较烧伤组显著降低。结论:抗内毒素Fab’能减轻内毒素对机体的损害,从而起到对严重烧伤早期肠源性脓毒症的防治作用。  相似文献   

13.
Abstract: We sought to investigate whether dexamethasone produces a coordinated, time-dependent effect on all enzymes in the catecholamine biosynthetic pathway in PC12 cells. The levels of mRNAs of tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), and dopamine γ-hydroxylase (DBH) were examined at 0, 6, 12, 24, and 48 h after dexamethasone (5 μ M ) treatment to PC12 cells. The levels of all enzyme mRNAs steadily increased for 24 h, although the increase of AADC mRNA content was slow. The increased mRNA levels of TH and AADC were maintained at 48 h, whereas the level of DBH mRNA was sharply decreased at 48 h. The maximally induced mRNA levels were ∼5.0-, 2.4-, and 7.0-fold higher than the control levels of TH, AADC, and DBH, respectively. The elevation of enzyme activities was detected later than the increase in levels of mRNAs. The maximal activities of TH, AADC, and DBH were reached between 48 and 72 h with 3.6-, 1.8-, and 8.0-fold increases, respectively. Low, but detectable, phenylethanolamine N -methyltransferase (PNMT) activity was observed in PC12 cells, and dexamethasone increased its activity 5.6-fold at 72 h. The PNMT mRNA was easily detected by northern blot analysis after exposure for 24 h to dexamethasone. The data suggest that, in PC12 cells, dexamethasone up-regulates all catecholamine biosynthetic enzyme genes in a parallel fashion.  相似文献   

14.
The activity changes of the urea-cycle enzymes were monitored in cultured foetal hepatocytes after dexamethasone and insulin treatments. Addition of dexamethasone induced the development of carbamoyl-phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase activities as soon as day 16.5 of gestation. When insulin was added together with dexamethasone, it markedly inhibited the steroid-induced increase in carbamoyl-phosphate synthetase, argininosuccinate synthetase and argininosuccinase activities.  相似文献   

15.
Excess nitric oxide (NO) induces apoptosis of some cell types, including macrophages. As NO is synthesized by NO synthase (NOS) from arginine, a common substrate of arginase, these two enzymes compete for arginine. There are two known isoforms of arginase, types I and II. Using murine macrophage-like RAW 264.7 cells, we asked if the induction of arginase II would downregulate NO production and hence prevent apoptosis. When cells were exposed to lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the inducible form of NOS (iNOS) was induced, production of NO was elevated, and apoptosis followed. When dexamethasone and cAMP were further added, both iNOS and arginase II were induced, NO production was much decreased, and apoptosis was prevented. When the cells were transfected with an arginase II expression plasmid and treated with LPS/IFN-γ, some cells were rescued from apoptosis. An arginase I expression plasmid was also effective. On the other hand, transfection with the arginase II plasmid did not prevent apoptosis when a NO donor SNAP or a high concentration (12 mM) of arginine was added. These results indicate that arginase II prevents NO-dependent apoptosis of RAW 264.7 cells by depleting intracellular arginine and by decreasing NO production.  相似文献   

16.
Liver explants from 19-day foetal rats were maintained in organ culture, in a defined medium, for up to 48h. Both 6-N,2'-O-dibutyryl cyclic AMP, in the presence of theophylline, and dexamethasone caused an increase in the activities of carbamoyl phosphate synthase, argininosuccinate synthetase, argininosuccinate lyase and arginase. These increases could be abolished by simultaneously incubating the explants with cycloheximide. No change in the activity of ornithine transcarbamoylase was found with either hormone. Previous work has shown that injection of corticosteroids into 19.5-day foetal rats in utero did not cause an increase in the arginine synthetase system. Present results suggest that this lack of effect is not due to any incompetence of the foetal rat liver at this stage to respond to this agent. The observations on ornithine transcarbamoylase activity suggest that this enzyme is induced in the liver of the perinatal rat by neither corticosteroids nor hormones acting via cyclic AMP, and it may be that all the enzymes of the urea cycle are induced physiologically by an agent or agents as yet unidentified.  相似文献   

17.
Human monocyte subsets, isolated from cultures of mononuclear cells, or freshly obtained from patients with multiple sclerosis, Graves' disease or pemphigus vulgaris, differed in phenotype, apoptotic features, mRNA levels of arginase II (A-II) and the inducible form of nitric oxide synthase (iNOS). Liver-type arginase I mRNA was present in all subsets. Apoptosis was followed by the expression of T cell intracellular antigen (TIA) and the simultaneous detection of DNA stainability by propidium iodine and annexin V binding. Apoptosis was practically absent both in activated CD14(++)CD33(++)DR(++)CD25(++)CD69(++)CD71(++/+) CD16(-) cells, expressing A-II mRNA and having arginase activity, but not iNOS mRNA, and in not fully mature large CD14(++)CD16(+)CD23(+)DR(++) monocytes, expressing simultaneously both mRNAs and having both enzyme activities. However, differentiated small CD14(+/++)CD16(+)CD69(+)CD25(+/-)CD71(++)CD23(+) DR(++) monocytes, expressing high levels of iNOS mRNA, exhibited apoptotic signs. Amounts of NO synthesised by monocytes co-expressing iNOS and arginase changed with the addition of arginine or an iNOS inhibitor; in that case a correlation of NO production and apoptotic features was observed. Data suggest a regulatory role for endogenous NO in apoptosis of stimulated and differentiated monocytes, and also that iNOS and A-II, when simultaneously present, could control the production of NO as a consequence of their competition for arginine.  相似文献   

18.
Argininosuccinate synthetase, an ubiquitous enzyme in mammals, catalyses the formation of argininosuccinate, the precursor of arginine. Arginine is recognised as an essential amino acid in foetuses and neonates, but also as a conditionally essential amino acid in adults. Argininosuccinate synthetase is initially expressed in enterocytes during the developmental period, it disappeared from this organ then appeared in the kidneys. Although the importance of both intestinal and renal argininosuccinate synthetases has been recognised for a long time, nutrients have not yet been identified as inducers of the gene expression. In the context of a proteomic screening of intestinal modifications induced by dietary spermine in suckling rats, we showed that argininosuccinate synthetase and carbamoyl phosphate synthase disappeared from enterocytes after this treatment. The disappearance of argininosuccinate synthetase in small intestine was confirmed by immunodetection. Expression of carbamoyl phosphate synthase and argininosuccinate synthetase coding genes decreased also after spermine administration. Expression of other urea cycle enzyme coding genes was modulated by spermine administration: argininosuccinate lyase decreased and arginase increased. Our results fit with the developmental variation of argininosuccinate synthetase and carbamoyl phosphate synthase. Modulation of the gene expression for several urea cycle enzymes suggests a coordination between all the pathway steps and switch toward polyamine (or proline and glutamate) biosynthesis from ornithine.  相似文献   

19.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

20.
We previously reported that macrophage arginase inhibits NO-dependent trypanosome killing in vitro and in vivo. BALB/c and C57BL/6 mice are known to be susceptible and resistant to trypanosome infection, respectively. Hence, we assessed the expression and the role of inducible NO synthase (iNOS) and arginase in these two mouse strains infected with Trypanosoma brucei brucei. Arginase I and arginase II mRNA expression was higher in macrophages from infected BALB/c compared with those from C57BL/6 mice, whereas iNOS mRNA was up-regulated at the same level in both phenotypes. Similarly, arginase activity was more important in macrophages from infected BALB/c vs infected C57BL/6 mice. Moreover, increase of arginase I and arginase II mRNA levels and of macrophage arginase activity was directly induced by trypanosomes, with a higher level in BALB/c compared with C57BL/6 mice. Neither iNOS expression nor NO production was stimulated by trypanosomes in vitro. The high level of arginase activity in T. brucei brucei-infected BALB/c macrophages strongly inhibited macrophage NO production, which in turn resulted in less trypanosome killing compared with C57BL/6 macrophages. NO generation and parasite killing were restored to the same level in BALB/c and C57BL/6 macrophages when arginase was specifically inhibited with N(omega)-hydroxy-nor-L-arginine. In conclusion, host arginase represents a marker of resistance/susceptibility to trypanosome infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号