首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ipomeamarone 15-hydroxylase activity was mainly recovered inthe pellet fraction between centrifugations at 10,000 and 100,000?gfrom a crude extract of Ceratocystis fimbriata-infected sweetpotato root tissue, whereas cinnamic acid 4-hydroxylase activitywas found between centrifugations at 300 and 10,000?g. Whenparticles in the crude extract were fractionated by sucrosedensity gradient centrifugation, the rough-surfaced microsomeswere distributed over a wide density range from 1.09 to 1.14g cm–3, judging from the distributions of protein, RNAand NADPH-cytochrome c reductase activity. Phosphorylcholine-glyceridetransferase activity was only in the lighter half of the microsomalfraction (density: 1.09–1.11 g cm–3). Ipomeamarone15-hydroxylase activity was found in heavier half of the microsomalfraction (density: 1.10–1.14 g cm–3). We proposethat this tissue has two rough-surfaced endoplasmic reticulumspecies, only one of which carries phosphorylcholine-glyceridetransferase, and that the cytochrome P-450 system is localizedon the species lacking the enzyme. Cinnamic acid 4-hydroxylaseactivity was mainly found in a fraction that had densities of1.17–1.19 g cm–3 and contained vesicular particlesof various sizes. 1 Present address: Laboratory of Food Hygienics, Faculty ofAgriculture, Kagawa University, Miki-cho, Kida-gun, Kagawa 761-07,Japan. (Received September 6, 1984; Accepted December 27, 1984)  相似文献   

2.
A thiol proteinase was purified 6,400-fold from leaves of Hordeumdistichum L. by a sequence of ammonium sulfate fractionation,gel filtration, ion exchange chromatography, hydrophobic chromatographyand chromatofocusing. This enzyme also had nitrate reductase(NR)-inactivating activity, which was associated with proteolyticactivity in almost constant proportions during the purificationprocedures. Its molecular weight was estimated as 74,000 bygel filtration, and it had an isoelectric point of 4.05 andan apparent Km of 0.83 mg ml–1 for azocasein. The respectiveoptimum pH for proteolytic and NR-inactivating activities were6.0 and 7.0. On electrophoresis, the proteinase gave a majorband that coincided with both activities; it also produced afaint band associated with no activity. Our purified thiol proteinase inactivated FMNH2-NR and MVH-NRas well as NADH-NR, but it had only a slight effect on NADHcytochrome c reductase activity. This enzyme also inactivatedglutamine synthetase. (Received September 16, 1983; Accepted January 26, 1984)  相似文献   

3.
Hydrosulfite-reduced FMN served as an electron donor for nitratereductase purified from broad bean leaves. FMN was successfullyreplaced with BV. The flavine nucleotide nitrate reductase hadits pH optima at about 7.8 with phosphate buffer and at about7.4 with Tris-HCl buffer. The Km's for nitrate and FMN were3.7 ? 10–4 M and 3.7 ? 10–5 M, respectively. NADH2: nitrate reductase activity was completely inhibited by0.1 mM p-CMB, whereas FMNH2: nitrate reductase activity wasnot. Inhibited activity was restored by the addition of cysteine.A sulfhydryl enzyme is involved in the NADH2: nitrate reductasesystem but not in the FMNH2 : nitrate reductase system. NADH2and FMNH2 probably feed electrons into the electron transportchain at different sites. The nitrate reductase preparationhad an NADH2-specific diaphorase activity which was almost completelyinhibited by 0.1 mM p-CMB. The NADH2-specific diaphorase mayform the sulfhydryl enzyme which mediates electron transferbetween NADH2 and nitrate. (Received May 6, 1969; )  相似文献   

4.
Carbonic anhydrase (CA) activity was detected in homogenatesfrom Anabaena variabilis ATCC 29413, M-2 and M-3, but not inthe suspension of the intact cells. Activity was higher in cellsgrown in ordinary air (low-CO2 cells) than in those grown inair enriched with 2–4% CO2 (high-CO2 cells). Fractionationby centrifugation indicated that the CA from A. variabilis ATCC29413 is soluble, whereas both soluble and insoluble forms existin A. variabilis M-2 and M-3. The addition of dithiothreitoland Mg2 $ greatly decreased the CA activity of A. variabilisATCC 29413. The specific activity of the CA from A. variabilis ATCC 29413was increased ca. 200 times by purification with ammonium sulfate,DEAE-Sephadex A-50 and Sephadex G-100. Major and minor CA peaksin Sephadex G-100 chromatography showed respective molecularweights of 48,000 and 25,000. The molecular weight of the CAdetermined by polyacrylamide disc gel electrophoresis was 42,000?5,000.The activity of CA was inhibited by ethoxyzolamide (I50=2.8?10-9M), acetazolamide (I50=2.5?10-7 M) and sulfanilamide (I50=2.9?10-6M). (Received January 5, 1984; Accepted April 26, 1984)  相似文献   

5.
Nitrate reductase (NR) from the leaves of Hordeum distichumwas very susceptible to inactivation by barley leaf thiol proteinase,trypsin, and papain. A cytochrome c reductase species with amolecular weight of about 40,000 was derived from the NR complexby the proteolytic actions. The barley proteinase seemed toattack the Mo+-containing component of NR, just like trypsinand papain. It showed a preference for the alanine and tryptophanesters among the carbobenzoxyamino acid-nitrophenylesters tested. In vivo NR activity in the presence of leupeptin was fairlyhigher than that in its absence. Leupeptin also protected NRfrom its cleavage to small cytochrome c reductase species, suggestingthat the barley proteinase may play a role in the in vivo changein NR activity. (Received May 21, 1984; Accepted September 10, 1984)  相似文献   

6.
Sedimentation behavior of sweet potato glucose 6-phosphate dehydrogenasewas studied using the sucrose density gradient centrifugation.The relative s value to s20, value of alcohol dehydrogenasewas determined to be about 6 in the absence of both NADP$ andglucose 6-phosphate. In the presence of NADP$, the enzyme wassedimented with a relative s value of about 9. The additionof glucose 6-phosphate did not affect the sedimentation behavior.When glucose 6-phosphate was added to the gradient medium containingNDAP$, the enzyme was sedimented with a relative s value ofabout 6 or 7, depending on the concentration of glucose 6-phosphate. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku. Tokyo, Japan. (Received February 13, 1971; )  相似文献   

7.
Spinach plants grown without molybdenum lack nitrate reductaseand when plants are deprived of nitrate existing activity islost. Transfer of molybdenum-deficient plants to a solutioncontaining (NH4)299MoO4) or nitrate-starved plants to NaNO3solution induced enzyme activity in 24 hr. After purificationby selective adsorption, precipitation and disc electrophoresis,the protein from molybdenum-deficient plants given 99Mo showedradioactivity only where nitrate reductase was revealed on theacrylamide gel. Molybdenum was similarly selectively concentratedinto the enzyme as a result of induction by nitrate in plantsgrown with sub-optimal molybdenum supply in order to minimizeeffects of isotope dilution on measurement of 99Mo incorporation. There was no exchange in vitro between 99Mo and purified activeenzyme in the resting state over 18 hr at 4°C, or with functioningenzyme held at room temperature for 24 hr. There was evidenceeither for possible in vivo exchange of 99Mo andenzyme boundMo or for slight synthesis of fresh enzyme under conditionsof net loss of enzyme in nitrate starved plants. Five NADH2 and two NADPH2 reactive diaphorases which could beseparated by electrophoresis were present in extracts. Onlyone of these having strong NADH2 and weak NADPH2 activity wasdirectly associated with nitrate reductase. The same complexalso showed the only benzyl viologen (BV.) reactive nitratereductase. Nitrate reductase in spinach is therefore considered to be amolybdenum-dependant and molybdenum-containing protein in whichNADH2 (with weak NADPH2) and BVelectron donor functions anddiaphorase/reductase activities remain closely associated duringpurification and electrophoresis. The techniques provide a simple means for the production andpurification of enzyme containing radioactively labelled Moapplicable to investigations on the structure of the enzyme. (Received January 16, 1971; )  相似文献   

8.
Topoisomerase II was partially purified from Daucus carota cellsby a procedure including ammonium sulphate fractionation, ion-exchange,and affinity chromatography steps. The type II enzyme, identifiedfor its ability to unknot knotted P4 DNA and decatenate Trypanosomacruzi kDNA, requires ATP and Mg2+ for activity. The unknottingactivity was sensitive to an inhibitor of the mammalian typeII enzyme, the drug VP16 (IC50 32 mmol m–3), whereas inhibitorsof DNA gyrase showed a limited effect on activity. The SDS-PAGEanalysis of the dsDNA cellulose fraction revealed the presenceof four polypeptides of apparent molecular masses of 72, 71,34, and 33 kDa among which only a polypeptide of about 70 kDacrossreacted with antibodies against yeast topoisomerase II.Immunoprecipitation experiments with monoclonal antibodies tothe and ß isoforms of the human enzyme confirmedthe recognition of a polypeptide of 70 kDa. The sedimentationcoefficient (S) of the topoisomerase II in the phosphocellulosefraction, calculated by analytical glycerol gradient, was 6.1corresponding to a molecular mass of about 123 kDa. Resultssuggest the presence in carrot of a protein of molecular massof 70 kDa having the typical properties of an eukaryotic topoisomeraseII and carrying epitopes recognized by MoAbs to both human and ß enzymes. The 70 kDa polypeptide might then representthe monomer of a homodimer enzyme of 123 kDa. Key words: Daucus carota, topoisomerase II, immunoprecipitation  相似文献   

9.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

10.
NAD-malic enzyme (NAD-ME) functions to decarboxylate malatein the light in leaves of certain species displaying Crassulaceanacid metabolism (CAM). The properties of NAD-ME in desaltedextracts from the inducible CAM species, Mesembryanthemum crystallinumwere examined. The shapes of the malate saturation curve andthe activity versus pH curve at 10 mM malate were dependenton the presence of the activator CoA. The malate saturationcurve was sigmoidal in the absence of an activator and hyperbolicin the presence of CoA. The pH optimum with 10mM malate andMn2+ as cofactor was as low as 6.5 without an activator, andincreased to 7.2 in the presence of CoA. Fumarate activationwas synergistic with CoA above pH 7.2. The enzyme displayedhysteretic behavior under suboptimal assay conditions. Rapid extraction and desalting of the enzyme (<1.5 mim) followedimmediately by assay did not reveal any difference in the propertiesof the enzyme on a day/night basis. It is proposed that diurnalregulation of the enzyme in vivo is mediated by pH and malatelevel without a change in the oligomeric form of the enzyme.The molecular weight of the enzyme was approximately 350,000at pH 6.5 or 7.8. The enzyme obtained from M. crystallinum inthe C3 mode was very similar to the CAM enzyme except that itdisplayed a lower Vmax. 3 Current address: MSU-DOE Plant Research Lab, Michigan StateUniversity, E. Lansing, Michigan, U.S.A. 48824. (Received October 2, 1984; Accepted December 20, 1984)  相似文献   

11.
Nitrite reductase [nitric-oxide : (acceptor) oxidoreductase,EC 1.7.2.1 [EC] ] from a denitrifying phototrophic bacterium, Rhodopseudomonassphaeroides forma sp. denitrificans, was purified. The molecularweight of the enzyme, estimated by gel-filtration, was 80,000.Sodium dodecyl sulfate polyacrylamide gel electrophoresis ofthe purified enzyme showed a single 39,000 molecular weightband, indicating that the enzyme was composed of two subunitsof identical molecular weight. The oxidized form of the enzymeexhibited maximum absorption at 280 nm, 450 nm and 590 nm, andthe reduced form only at 280 nm. The ESR spectrum of a frozensolution of the oxidized enzyme showed a typical spectrum patternof a copper protein, suggesting that two types of Cu2+ existedwithin the enzyme. Estimates with an atomic absorption spectrophotometer,revealed two copper atoms per molecule. The optimum pH of theenzyme was 7.0. Km for nitrite was estimated to be 51 µM,and the optimum temperature, 30?C. The enzyme was inhibitedby CO, potassium cyanide and diethyldithiocarbamate and activatedby monoiodoacetate. Phenazine methosulfate, 2,6-dichlorophenolindophenol,horse heart cytochrome c, and cytochrome c2 from this bacteriumwere suitable electron donors. The enzyme also showed cytochromec oxidase activity. (Received May 4, 1978; )  相似文献   

12.
When microsomal membranes from maize (Zea mays L. cv. Clipper)coleoptiles were separated by isopyc-nic centrifugation on acontinuous 10–45% sucrose gradient, bafilomycin A1-inhibitedATPase activity co-localized with the activities of the tonoplastmarker-enzymes, nitrate-Inhibited ATPase and K+-dependent pyrophosphatase.Thus, bafilomycin A1 is a specific inhibitor of the vacuolarH+-ATPase of maize coleoptiles. Inhibition of the vacuolar H+-ATPaseby bafilomycin A1 was strictly dependent upon the concentrationof the enzyme present in the assay medium, suggesting a stoichiometricassociation between bafilomycin A1 and the vacuolar H+-ATPase.In tonoplast-enriched preparations, half-maximal inhibitionwas obtained at 43 pmol bafilomycin A1 mg–1 protein. BafilomycinA1 inhibited the vacuolar H+-ATPase in a simple non-competitivemanner: increasing bafilomycin A1 concentrations reduced theVmax, of the H+ -ATPase, but had no effect on its Km towardsATP. Key words: Bafilomycin A1, coleoptile, H+-ATPase (vacuolar), maize, Zea mays L  相似文献   

13.
We report, for the epithelialNa+ channel (ENaC) in A6 cells,the modulation by cell pH (pHc)of the transepithelial Na+ current(INa), thecurrent through the individual Na+channel (i), the openNa+ channel density(No), and thekinetic parameters of the relationship betweenINa and theapical Na+ concentration. Thei andNo were evaluatedfrom the Lorentzian INa noise inducedby the apical Na+ channel blocker6-chloro-3,5-diaminopyrazine-2-carboxamide.pHc shifts were induced, understrict and volume-controlled experimental conditions, byapical/basolateral NH4Cl pulses orbasolateral arrest of theNa+/H+exchanger (Na+ removal; block byethylisopropylamiloride) and were measured with the pH-sensitive probe2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Thechanges in pHc were positivelycorrelated to changes inINa and theapically dominated transepithelial conductance. The sole pHc-sensitive parameter underlyingINa wasNo. Only thesaturation value of theINa kinetics wassubject to changes in pHc.pHc-dependent changes inNo may be causedby influencingPo, the ENaC openprobability, or/and the total channel number,NT = No/Po.

  相似文献   

14.
  1. Cytochromes a1590, b560, c1554 and c1552 were isolated andpurifiedfrom a strain of Acetobacter suboxydans. The proceduresusedwere described in detail.
  2. The main cytochrome band at550-560 mµ in intact cellssplitted at liquid air temperatureinto two bands, 551 mµ(strong) and 559 mµ (weak).
  3. Optical and physiological properties of the four cytochromeswere investigated. Lactic dehydrogenase activity was found tobe associated with cytochrome c1554. The two c1-type cytochromes,especially cytochrome c1554, persisted in their reduced formafter the purification through many steps.
  4. By some combinationsof isolated components reconstruction ofthe oxygen uptake systemcould be realized.
  5. The oxygen-consuming activity of purifiedoxidase preparationswas accelerated by a-tocopherol but notby Emasoll 4130 andTween 80.
  6. Some discussions were made onthe nature of terminal oxidase,the role of cytochrome c1552in the electron-transport system,and persistence of reducedstate of c1-type cytochromes.
  7. A possible scheme of the electron-transferringsystem of Acetobactersuboxydans was presented.
(Received May 16, 1960; )  相似文献   

15.
Continuous measurements of cytoplasmic pH (pHc) in Sinapis roothairs have been carried out with double-barrelled pH-micro-electrodesin order to gain information on translocation of protons acrossthe plasmalemma and cytoplasmic pH control. (i) The cytoplasmicpH of Sinapis (7–33 ? 0–12, standard conditions)changes no more than 0.1 pHc, per pHo-unit, regardless of whethercyanide is present or not. (ii) Weak acids rapidly acidify pHcand hyperpolarize, while weak bases alkalize pHc and depolarizethe cells, (iii) 1.0 mol M,3 NaCN acidifies the cytoplasm by0.4 to 0.7 pH-units, but alkalizes the vacuole. (iv) 20 mmolm–3 CCCP has no significant effect on pHc, if added atpH 9.6 or 7.2, but acidifies pHc by 1.3 units at pH 4.3. Inthe presence of CCCP, cyanide acidifies the cytoplasm, (v) Chloridetransiently acidifies pHc, while K+, Na+, and have no significant effects, (vi) Cytoplasmic buffer capacityforms a bell-shaped curve versus pHc with an optimum of about50 mol m–3 H+pHc-unit. The modes of proton re-entry and the effects of active and passiveproton transport on cellular pH control are critically discussed.It is suggested that the proton leak, consisting of H+-cotransport(e.g. H+/Cl) rather than H+-uniport, is no threat topHc. The proton export pump, although itself reacting to changesin pHc, influences pHc only to a minor extent. It is concludedthat buffer capacity and membrane transport play moderate rolesin pHc control in Sinapis, while the interlocked H+-producingand -consuming reactions of cellular metabolism are the mainregulating factors. This makes pH control in Sinapis quite differentfrom bacterial and animal cells. Key words: Cytoplasmic pH, double-barrelled pH micro-electrode, pH control, proton transport, Sinapis  相似文献   

16.
NADP+-Dependent Sorbitol Dehydrogenase Found in Apple Leaves   总被引:1,自引:0,他引:1  
An NADP+-dependent sorbitol dehydrogenase that catalyzes sorbitoland glucose was found in apple leaves. The partially purifiedenzyme had optimum activity at pH 9.6 and a Km value of 128mM for sorbitol. Among the polyols studied, this enzyme showedthe most activity for sorbitol. 1This paper is contribution A-173 of the Fruit Tree ResearchStation. (Received June 4, 1984; Accepted July 31, 1984)  相似文献   

17.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C–1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C–1 between 25 and 15?C, but 0.005 units?C–1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the –0.017units ?C–1 needed to maintain a constant H+/OH–1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2–HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma.  相似文献   

18.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

19.
Ito  Nobuaki 《Plant & cell physiology》1980,21(6):1053-1065
NADPH-nitrate reductase (NR) and NADPH-cytochrome c reductase(CR) activities of Rhodotorula glulinis var. salinaria cellsgrown in nitrate medium supplied with hydroxylamine (0.2 mM)were respectively 1.6- and 3.1-fold higher than those of cellsgrown without hydroxylamine. NR formed in nitrate plus hydroxylaminemedium is almost totally in an inactive form which is reactivatedin vitro by K3Fe(CN)6. When molybdate (10–7 M) was suppliedto this medium, total (active plus inactive) NR activity increasedfurther about twofold but CR activity somewhat decreased. Inordinary nitrate medium, such molybdate effects were small.Most of the CR derepressed (induced) excessively in the nitrateplus hydroxylamine medium had a molecular size similar to NRon the basis of Bio-Gel A 1.5 m chromatography. Some other propertiesof CR formed in this medium were the same as those of the CRmoiety of NR. Adding molybdate to the nitrate plus hydroxylamine medium aftergrowing the cells for 20 hr induced the development of NR activitywithout any increase in CR activity. This induction was completelyblocked by cycloheximide, puromycin and L-canavanine but notcompletely by 6-methylpurine. Ammonium repressed this inductionwith markedly decreasing CR activity. The roles of hydroxylamine and molybdate in the formation ofNR are discussed. (Received May 26, 1980; )  相似文献   

20.
The purification and properties of a nitrate reductase fromthe green alga Dunaliella tertiolecta are described. The enzymeis soluble, with a molecular weight greater than 500,000 andhas Km values of 0.26, 0.18, 0.10 and 0.06 m for NO3,NADH, NADPH and FADH2 respectively. Even at the highest specificactivity obtained, (0.86 µmoles NO3 reduced min–1mg protein–1) the enzyme retains the capacity to acceptelectrons from both NADH and NADPH. Unlike other nitrate reductasesit does not appear to be able to use reduced viologens as electrondonors. Its other properties are consistent with its being amolybdoflavoprotein of high molecular weight, which is alsoable to function as a cytochrome C reductase. 1 Supported in part by the National Research Council of Canada. (Received June 18, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号