首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the great unanswered questions in the biology of both plants and animals is “How do simple groups of embryonic cells develop into complex and highly structured organisms, or parts of organisms?” The answers are only beginning to be known; the processes involved include establishment of positional information, and its interpretation into patterns of cell division and cellular differentiation. One remarkable and attractive example of the formation of a complex structure from a simple group of cells is the development of a flower, with its characteristic types, numbers and patterns of floral organs. Because of the ease with which plants (especially the plantArabidopsis thaliana) can be manipulated in the laboratory, flowers provide a unique opportunity to learn some of the fundamental rules of development.  相似文献   

2.
3.
Summary Leaf explants of Sinningia speciosa were cultured in vitro on Murashige and Skoog (MS) basal medium with various growth substances in order to regenerate shoots. On MS medium supplemented with indoleacetic acid (IAA) and kinetin, 80% of the explants produced green callus and 25 to 30 shoots with roots per explant. On MS supplemented with IAA and N6 benzyladenine (BA), 80% of the explants produced green callus and 40 to 50 shoots per explant but lacked roots. After 3–4 mo., these shoots were removed from the initial explants and transferred separately onto MS supplemented with indolebutyric acid for their elongation and successive rooting (3 mo.). Histological studies showed that the callus was associated with mesophyll cell layers, primarily with the spongy parenchyma. The shoots regenerated at the callus surface and were associated with newly differentiated vascular areas. Recurrent regenerations were obtained from leaf explants or apical meristems excised from shoots of the previous subcultures. These explants, as compared to initial cultures, had a high frequency of regeneration and also produced more shoots per explant. Chromosome numbers of root tip cells of the mother plant and of all in vitro-regenerated plants remained constant: 2n=26.  相似文献   

4.
To understand the roles of two well known tumour suppressor genes.l(2)gl andl(2)gd in normal imaginal disc development inDrosophila, we have initiated a study to examine effect of mulations of these genes on the expression of genes involved in the patterning of the imaginal discs. In this study we show that the expression ofwingless, theDrosophila orthologue of the mammalian oncogeneWnt, is affected in the imaginal discs ofl(2)gl 4 andl(2)gd 1 mutant individuals. In the tumourous wing imaginal discs froml(2)gl mutant larvae, the pattern ofwingless expression was progressively disrupted with an increase in the area of expression, Tumourous wing imaginal discs froml(2)gd homozygous individuals exhibited progressive broadening and extension of the wingless expressing domains. We suggest thatl(2)gl andl(2)gd might be involved in regulating post embryonic expression ofWingless.  相似文献   

5.
Dornelas MC  Rodriguez AP 《Planta》2006,223(2):306-314
A homolog of FLORICAULA/LEAFY, CfLFY (for Cedrela fissilis LFY), was isolated from tropical cedar. The main stages of the reproductive development in C. fissilis were documented by scanning electron microscopy and the expression patterns of CfLFY were studied during the differentiation of the floral meristems. Furthermore, the biological role of the CfLFY gene was assessed using transgenic Arabidopsis plants. CfLFY showed a high degree of similarity to other plant homologs of FLO/LFY. Southern analysis showed that CfLFY is a single-copy gene in the tropical cedar genome. Northern blot analysis and in situ hybridization results showed that CfLFY was expressed in the reproductive buds during the transition from vegetative to reproductive growth, as well as in floral meristems and floral organs but was excluded from the vegetative apex and leaves. Transgenic Arabidopsis lfy26 mutant lines expressing the CfLFY coding region, under the control of the LFY promoter, showed restored wild-type phenotype. Taken together, our results suggest that CfLFY is a FLO/LFY homolog probably involved in the control of tropical cedar reproductive development. Accession numbers: AY633621 (CfLFY gene) and AY633622 (CfLFY mRNA)  相似文献   

6.
A new species of Sinningia (Gesneriaceae) from northeastern Brazil   总被引:1,自引:0,他引:1  
Sinningia nordestina is described and illustrated. Morphological and molecular characters are discussed. It is a new species endemic to northeastern Brazil and is distinguished from other members of the genus by its vestigial tubers, ascending pedicels with pendent flowers, small corollas, and deviating flowering period.  相似文献   

7.
Summary A family of genes expressed during early stages of shoot development were isolated fromPinus radiata. A homologue of theLEAFY/FLORICAULA flower meristem-identity genes,NEEDLY (NLY), and three MADS-box genes,PrMADS1, PrMADS2 andPrMADS3 (Pinus radiata MADS-box genes), were expressed at early stages of initiation and differentiation of reproductive (male and female) cone buds, as well as vegetative buds. Expression ofNLY in transgenicArabidopsis thaliana promoted floral fate, demonstrating that it encodes a functional ortholog of theFLORICAUL A/LEAFY genes of angiosperms.Abbreviations DSB dwarf shoot bud - LSTB long-shoot terminal bud - PCB pollen cone bud - SCB seed cone bud - LD long day - SD short day  相似文献   

8.
The life-history parameters reproduction rate, developmental time and age specific survival of the western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], were determined on susceptible and resistant cucumber (Cucumis sativus L.) genotypes. Both newly emerged andF. occidentalis females of mixed ages showed a substantial reduction (36 to 50%) of the reproduction rate on all resistant genotypes, in particular after the second day. On the resistant genotypes 9127 and 9140,F. occidentalis had a prolonged developmental period. This was primarily due to a prolongation of the second larval stage. On all resistant genotypes,F. occidentalis suffered from high (82 to 97%) preadult mortality, predominantly at the second larval stage. It is conclude that the resistant genotypes do not cause an immediate intoxication of adult nor preadult thrips stages.  相似文献   

9.
Prevention of flower formation is important, for example for preventing the spread of transgenes from genetically modified plants or the spread of non-native species, for increasing vegetative growth or preventing the formation of allergenic pollen. The aim of this study was to determine whether flowering of dicotyledonous plants can be prevented by genetic manipulation without harmful effects on vegetative growth. Here we describe isolation of the BpMADS1 gene (similar to SEP3, formerly AGL9) from birch and show that it is expressed only in the inflorescences. In tobacco and Arabidopsis, the expression of BpMADS1::GUS was also virtually inflorescence-specific. Transgenic tobacco and Arabidopsis containing a BpMADS1::BARNASE construct grew well. In one tobacco line the formation of the inflorescence was completely prevented; in several other lines the flowers lacked stamens and carpels and therefore were sterile. The final dry weights of the shoots of the sterile tobacco lines were 140–200% of those of controls. In Arabidopsis, some of the transgenic lines containing the BpMADS1::BARNASE construct formed inflorescences. Some of these lines formed never flowers and some others formed occasionally single fertile flowers. Some other lines did not form inflorescences, but formed up to about one hundred leaves, even in long-day conditions. These results suggest that formation of flowers or inflorescences in widely different dicotyledonous plants could be prevented using the BpMADS1::BARNASE construct and that prevention of flowering may lead to increased vegetative mass.  相似文献   

10.
Dynastid scarab beetle pollination appears basic within the genusAnnona. Those species ofAnnona which are more morphologically derived, as well as allRollinia spp. possess reduced floral chambers and attract small beetles likeNitidulidae orStaphylinidae. Pollination of the primitive species ofAnnona byDynastinae would imply that the genus had not evolved before the Tertiary. The fossil record is in congruence with this hypothesis. Once again it is stressed that the cantharophilous syndrome, as it is found in theAnnonaceae, Magnoliaceae, Eupomatiaceae andCalycanthaceae, with beetles being exclusive pollinators, is a secondary and derived condition and obviously different from the expected basic entomophily of the original angiosperms.  相似文献   

11.
12.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   

13.
R. J. Goldburg 《Oecologia》1987,74(2):247-252
Summary As neighboring plants flower sequentially, do flower feeders preferentially remain in the area, rather than move to another area with flowering plants? I examined the movements of the meloid beetle Epicauta pennsylvanica, a flower predator specializing on Solidago, in four types of replicated experimental plots — monocultures of Solidago altissima, or S. altissima interplanted with members of the same genus, same family, or different taxonomic orders. I released marked beetles only in the genus plots, which contained four species of Solidago, two that bloom before S. altissima. The number of beetles in the genus plots declined steadily as S. altissima came into flower in all the plots; the total number of beetles in all the plots remained fairly constant. I found no evidence that plant neighborhoods affected beetle distribution. Beetles foraging on the early blooming Solidago species did not remain in the genus plots as S. altissima came into flower. In addition, beetles that left the genus plots did not differentially accumulate in any of the other plot types, even though one type of plot was a monoculture with four times the density of S. altissima than the other plots.  相似文献   

14.
A fosmid library of cucumber was synthesized as an unrestricted resource for researchers and used for comparative sequence analyses to assess synteny between the cucumber and melon genomes, both members of the genus Cucumis and the two most economically important plants in the family Cucurbitaceae. End sequencing of random fosmids produced over 680 kilobases of cucumber genomic sequence, of which 25% was similar to ribosomal DNAs, 25% to satellite sequences, 20% to coding regions in other plants, 4% to transposable elements, 13% to mitochondrial and chloroplast sequences, and 13% showed no hits to the databases. The relatively high frequencies of ribosomal and satellite DNAs are consistent with previous analyses of cucumber DNA. Cucumber fosmids were selected and sequenced that carried eukaryotic initiation factors (eIF) 4E and iso(4E), genes associated with recessively inherited resistances to potyviruses in a number of plants. Indels near eIF4E and eIF(iso)4E mapped independently of the zym, a recessive locus conditioning resistance to Zucchini yellow mosaic virus, establishing that these candidate genes are not zym. Cucumber sequences were compared with melon BACs carrying eIF4E and eIF(iso)4E and revealed extensive sequence conservation and synteny between cucumber and melon across these two independent genomic regions. This high degree of microsynteny will aid in the cloning of orthologous genes from both species, as well as allow for genomic resources developed for one Cucumis species to be used for analyses in other species. Names are necessary to report factually on available data; however, the US Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

15.
16.
The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.  相似文献   

17.
The calcineurin B-like (CBL) proteins, comprising a large subfamily of calcium sensors in plant cells, play an important role in many stress responses. We cloned a gene from the halophyteThellungiella halophila that is homologous toAtCBL9 inArabidopsis thaliana. The 1008-bpThCBL9 contains an ORF of 639 bp and encodes 213 amino acids, with a 5“-untranslated region of 193 bp and a 3”-untranslated region of 176 bp. Its amino acid sequence shares high homology with AtCBLs.ThCBL9 is up-regulated by ABA, NaCI, and PEG inThellungiella leaves. Using molecular biological methods, we over-expressedThCBL9 inA. thaliana and found that this enhanced tolerances to both high salt and osmotic stress in transgenicArabidopsis. These authors contributed equally to this work.  相似文献   

18.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   

19.
Floral evolution in the tribeVeroniceae was examined using phylogenetic analysis combining 24 adult morphology and chromosome number characters with 22 qualitative and quantitative floral development characters. Taxa sampled included nine species ofVeroniceae and as an outgroup one species each ofDigitaleae andVerbasceae. Veronica, Besseya, andSynthyris formed one clade, subtended byPseudolysimachion and then by theHebe group;Veronicastrum orWulfenia represent the basal-most branch of the tribe. The ancestral flowers of theVeroniceae may have been small with moderately short corolla tubes and lobes; long corolla tubes arose four times in the tribe and large corolla lobes twice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号