首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lipid rafts and their component, cholesterol, modulate the processing of beta-amyloid precursor protein (APP). However, the role of sphingolipids, another major component of lipid rafts, in APP processing remains undetermined. Here we report the effect of sphingolipid deficiency on APP processing in Chinese hamster ovary cells treated with a specific inhibitor of serine palmitoyltransferase, which catalyzes the first step of sphingolipid biosynthesis, and in a mutant LY-B strain defective in the LCB1 subunit of serine palmitoyltransferase. We found that in sphingolipid-deficient cells, the secretion of soluble APPalpha (sAPPalpha) and the generation of C-terminal fragment cleaved at alpha-site dramatically increased, whereas beta-cleavage activity remained unchanged, and the epsilon-cleavage activity decreased without alteration of the total APP level. The secretion of amyloid beta-protein 42 increased in sphingolipid-deficient cells, whereas that of amyloid beta-protein 40 did not. All of these alterations were restored in sphingolipid-deficient cells by adding exogenous sphingosine and in LY-B cells by transfection with cLCB1. Sphingolipid deficiency increased MAPK/ERK activity and a specific inhibitor of MAPK kinase, PD98059, restored sAPPalpha level, indicating that sphingolipid deficiency enhances sAPPalpha secretion via activation of MAPK/ERK pathway. These results suggest that not only the cellular level of cholesterol but also that of sphingolipids may be involved in the pathological process of Alzheimer's disease by modulating APP cleavage.  相似文献   

2.
Depletion of sphingolipids facilitates endosome to Golgi transport of ricin   总被引:1,自引:0,他引:1  
It has been previously demonstrated that depletion of cholesterol inhibits endosome to Golgi transport. Whether this inhibition is due to disruption of sphingolipid- and cholesterol-containing lipid rafts that are selected for Golgi transport or whether there is a physical requirement of cholesterol for either membrane deformations, facilitating formation of transport vesicles, or for recruitment of cytosolic constituents is not obvious. To investigate this in more detail, we have studied endosome to Golgi transport of ricin in sphingolipid-deficient cells using either a mutant cell line that does not express serine palmitoyltransferase, the first enzyme in sphingolipid biosynthesis, or a specific inhibitor, myriocin, of the same enzyme. Depletion of sphingolipids gave an increased sensitivity to ricin, and this increased sensitivity was inhibited by addition of sphingolipids. Importantly, endosome to Golgi transport of ricin, measured as sulfation of a modified ricin molecule, was increased in sphingolipid-deficient cells. No effect was seen on other pathways taken by ricin. Interestingly, cholesterol depletion inhibited endosome to Golgi transport even in cells with reduced levels of sphingolipids, suggesting that cholesterol as such is required for formation of transport vesicles. Our results indicate that the presence of sphingolipids actually limits and may function to control endosome to Golgi transport of ricin.  相似文献   

3.
S Eriksen  S Olsnes  K Sandvig    O Sand 《The EMBO journal》1994,13(19):4433-4439
Receptor-dependent translocation of diphtheria toxin across the surface membrane of Vero cells was studied using patch clamp techniques. Translocation was induced by exposing cells with surface-bound toxin to low pH. Whole cell current and voltage clamp recordings showed that toxin translocation was associated with membrane depolarization and increased membrane conductance. The conductance increase was voltage independent, with a reversal potential of approximately 15 mV. This value was unaffected by changing the Cl- gradient across the membrane and microfluorometric measurements showed that the cytosolic Ca2+ concentration was only marginally elevated by the translocation. The conductance increase is thus mainly due to monovalent cations. Exposing outside-out and cell-attached patches with bound toxin to low pH induced a new type of ion channel in the membrane. The channel current was inward at negative membrane potentials and the single channel conductance was approximately 30 pS. This value is about three times larger than for receptor-independent channels induced by diphtheria toxin or toxin fragments in artificial lipid membranes.  相似文献   

4.
In this review, we focus on sphingolipids as potential regulators of the induction of multinuclear cell formation through the inhibition of cytokinesis. A sphingolipid, psychosine (Psy) (galactosylsphingosine), was demonstrated to be a trigger lipid for the inhibition of cytokinesis and the induction of multinuclear giant cells associated with a sphingolipid metabolic disease, globoid cell leukodystrophy (GLD). Indeed, Psy is known to accumulate in the patients' brains. Interestingly, inhibition of sphingolipid biosynthesis also induced multinuclear cells. When cells were treated with a new immunosuppressant, ISP-1/myriocin, which inhibits serine palmitoyltransferase, the first step enzyme of sphingolipid biosynthesis, the cells underwent multinucleation and apoptosis. At present, a definitive model of the function of sphingolipids as to the induction of multinuclear cell formation is not available due to the rudimentary information but possible mechanisms are discussed.  相似文献   

5.
Our recent studies have shown that the de novo sphingolipids play a role in apoptosis of photosensitized cells. To elucidate the involvement of the de novo sphingolipids in reactive oxygen species (ROS) production and mitochondrial depolarization during apoptosis, the stress inducer photodynamic therapy (PDT) with the photosensitizer Pc 4 was used. In Jurkat cells PDT-triggered ROS production or mitochondrial membrane potential (deltapsi(m)) loss was not prevented by the de novo sphingolipid synthesis inhibitor ISP-1. However, PDT + C16-ceramide led to enhanced mitochondrial depolarization and DEVDase activation. The superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) protected Jurkat cells from ROS generation and apoptosis, but not from deltapsi(m) reduction. Sphinganine or C16-ceramide counteracted MnTBAP-induced protection from apoptosis in Jurkat, as well as CHO cells. In LY-B cells, CHO-derived mutants deficient in serine palmitoyltransferase (SPT) activity and the de novo sphingolipid synthesis, mitochondrial depolarization, but not ROS generation, was suppressed post-PDT. In LY-B cells transfected with the SPT component LCB1, deltapsi(m) collapse post-PDT was restored. The data support the following hypotheses: MnTBAP protects against apoptosis via steps downstream of deltapsi(m) loss; de novo sphingolipids are not required for ROS generation, but can play a role in deltapsi(m) dissipation in photosensitized apoptotic cells.  相似文献   

6.
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol.  相似文献   

7.
The translocation of the enzymatic moiety of diphtheria toxin, fragment A, across the membranes of pure lipid vesicles was demonstrated. A new assay, which employed vesicles made to contain radiolabeled NAD and elongation factor-2, was used to measure the appearance of the enzymatic activity of the A fragment in the vesicles. When the vesicles were exposed to a low-pH medium in the presence of diphtheria toxin, small molecules, such as NAD, escaped into the extravesicular medium, whereas large molecules mostly remained inside the vesicles. The vesicle-entrapped elongation factor-2 became ADP-ribosylated, indicating the entry of fragment A into the vesicle. The translocation of the A fragment depended upon the pH of the medium, being negligible at pH greater than 7.0 and maximal at pH 4.5. The entire toxin molecule was needed for function; neither the A fragment nor the B fragment alone was able to translocate itself across and react with the sequestered substrates. After exposure of the toxin to low pH, the entry of the A fragment was rapid, being virtually complete within 2-3 min at pH 5.5, and within 1 min at pH 4.7. Translocation occurred in the absence of any protein in the vesicle membrane. These results are consistent with the notion that the diphtheria toxin molecule enters the cytoplasm of a cell by escaping from an acidic compartment such as an endocytic vesicle.  相似文献   

8.
Serine palmitoyltransferase (SPT), the enzyme catalyzing the initial step in the biosynthesis of sphingolipids, comprises two different subunits, LCB1 and LCB2. LCB1 has a single highly hydrophobic domain near the N terminus. Chinese hamster ovary cell mutant LY-B cells are defective in SPT activity because of the lack of expression of an endogenous LCB1 subunit. Stable expression of LCB1 having an epitope tag at either the N or C terminus restored SPT activity of LY-B cells, suggesting that the epitope tag did not affect the localization or topology of LCB1. Indirect immunostaining showed that the N- and C-terminal epitopes are oriented toward the lumenal and cytosol side, respectively, at the endoplasmic reticulum. Interestingly, there was far less LCB2 in LY-B cells than in wild-type cells, and the amount of LCB2 in LY-B cells was restored to the wild-type level by transfection with LCB1 cDNA. In addition, overproduction of the LCB2 subunit required co-overproduction of the LCB1 subunit. These results indicated that the LCB1 subunit is most likely an integral protein having a single transmembrane domain with a lumenal orientation of its N terminus in the endoplasmic reticulum and that the LCB1 subunit is indispensable for the maintenance of the LCB2 subunit in mammalian cells.  相似文献   

9.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

10.
Translocation of diphtheria toxin (DT) or ricin to the cytosol is the rate-limiting step responsible for (pseudo) first-order decline in protein synthesis observed in intoxicated cell populations. The requirements for energy utilization in the translocation of both toxins are examined by perturbing the intoxication during this period of protein synthesis decline. Translocation of either toxin is blocked at 4 degrees C and requires energy. Ricin translocation is tightly coupled to ATP hydrolysis with no involvement of membrane potential. Cell depolarization slows the rate of DT translocation but does not block completely. Elimination of transmembrane pH gradients alone does not affect DT translocation; however, in combination with depolarization, translocation is blocked virtually completely. Energy requirements for DT intoxication are mediated by establishing a plasma membrane potential and a pH gradient across some cellular membrane. It is proposed that a postendocytotic vesicle containing processed DT fuses with the plasma membrane. Either component of the proton motive force across the plasma membrane then drives DT translocation. Ricin apparently utilizes a different energy coupling mechanism at a different intracellular site, thus demonstrating toxin specificity in the translocation mechanism.  相似文献   

11.
A full-length recombinant mutant of diphtheria toxin containing serine in place of a crucial active-site glutamate has been purified and characterized. The serine substitution caused a minor structural alteration in the toxin as measured by trypsinolysis. ADP-ribosyltransferase activity and cytotoxicity of the mutant were both decreased by approximately 500-fold. A similar reduction in cytotoxicity was found when the enzymic fragments of both the wild-type and mutant toxins were introduced into the cytosol of fibroblasts by osmotically lysing pinosomes. The mutation did not alter the binding of the toxin to cell surface receptors and had no apparent effect on membrane translocation. The results suggest that the decreased cytotoxicity of the mutant is solely due to the reduced ADP-ribosyltransferase activity.  相似文献   

12.
Entry of diphtheria toxin-protein A chimeras into cells   总被引:6,自引:0,他引:6  
Fusion proteins consisting of diphtheria toxin and a duplicated Fc-binding domain of protein A were made in vitro after amplification of the DNA template by the polymerase chain reaction. The fusion proteins bound avidly to Vero cells coated with antibodies. A fusion protein containing full-length diphtheria toxin was toxic at lower concentrations than diphtheria toxin alone, apparently due to more efficient binding. The enzymatic part of the fusion protein was translocated across the surface membrane upon exposure to low pH. Like authentic diphtheria toxin, the fusion protein formed cation selective channels at low pH. Excess amounts of unlabeled diphtheria toxin inhibited formation of pronase-protected fragments derived from radiolabeled fusion protein. Furthermore, conditions that down-regulate the diphtheria toxin receptors reduced the sensitivity of the cells to the fusion protein, supporting the notion that authentic diphtheria toxin receptors are required. At temperatures below 18 degrees C the toxicity of the fusion protein was strongly reduced, whereas there was no temperature block for authentic diphtheria toxin. Brefeldin A protected Vero cells against the fusion protein but not against diphtheria toxin. The results indicate that the diphtheria toxin receptor is required for efficient toxin translocation even under conditions where the toxin is bound by an alternate binding moiety, and they suggest that the intracellular routing of the fusion protein is different from that of diphtheria toxin.  相似文献   

13.
Diphtheria toxin belongs to a group of toxic proteins that enter the cytosol of animal cells. We have here investigated the effect of NH2-terminal extensions of diphtheria toxin on its ability to become translocated to the cytosol. DNA fragments encoding peptides of 12-30 amino acids were fused by recombinant DNA technology to the 5'-end of the gene for a mutant toxin. The resulting DNA constructs were transcribed and translated in vitro. The translation products were bound to cells and then exposed to low pH to induce translocation across the cell membrane. Under these conditions all of the oligopeptides tested, including three viral peptides and the leader peptide of diphtheria toxin, were translocated to the cytosol along with the enzymatic part (A-fragment) of the toxin. Neither hydrophobic nor highly charged sequences blocked translocation. The results are compatible with a model in which the COOH-terminus of the A-fragment first crosses the membrane, whereas the NH2-terminal region follows behind. The possibility of using nontoxic variants of diphtheria toxin as vectors to introduce peptides into the cytosol to elicit MHC class I-restricted immune response and clonal expansion of the relevant CD8+ cytotoxic T lymphocytes is discussed.  相似文献   

14.
The effects of acidification of the cytosol and of electrical depolarization on the entry of diphtheria toxin were studied. Entry of the toxin from the cell surface was induced by low pH, and the presence of the toxin in the cytosol was monitored as toxin-induced inhibition of protein synthesis. To reduce the membrane potential the cells were incubated in a buffer containing a high concentration of potassium. The cytosol was acidified either by incubating the cells with acetic acid, by incubating them with ammonium chloride which was subsequently removed in the presence of amiloride to prevent pH regulation by the Na+/H+ exchanger, or by incubating the cells in isotonic KCl in the presence of nigericin and valinomycin. The results showed that when the cytosol was acidified by either method toxin entry was inhibited, while a reduction in the membrane potential did not strongly interfere with the entry. A pH gradient across the membrane of at least 1 pH unit was required for entry. Possibly this gradient acts as a driving force for diphtheria toxin entry.  相似文献   

15.
Role of anions in low pH-induced translocation of diphtheria toxin   总被引:1,自引:0,他引:1  
Previous work has shown that when Vero cells with surface-bound diphtheria toxin are exposed to low pH, toxin entry across the plasma membrane is induced and that this entry involves two steps, insertion of the B-fragment of the toxin into the membrane and translocation of the enzymatically active A-fragment to the cytosol. Here we have studied the role of permeant anions in this process. It was found that when the B-fragment was inserted into the membrane, part of it, a 25-kDa polypeptide, was shielded from externally added Pronase. This insertion did not require permeant anions. The translocation of the A-fragment was monitored by measuring either its ability to inhibit protein synthesis in the cells or the appearance of radioactively labeled 21-kDa fragment after treatment of the cells with externally applied Pronase. The translocation of the A-fragment was dependent on the presence of permeant anions in the medium. However, when the cells were depleted of Cl- by incubation in Cl- free buffer at high pH, translocation of the A-fragment did not require permeant anions in the medium. The possibility that translocation of the A-fragment is inhibited by an outward directed chloride gradient rather than by the absence of chloride is discussed.  相似文献   

16.
We studied the effect of myriocin, an inhibitor of serine palmitoyltransferase, on cultured Leishmania (Viannia) braziliensis promastigotes. Myriocin significantly reduced synthesis of inositol phosphorylceramide, the major sphingolipid expressed in promastigotes as characterized by thin layer chromatography and electrospray ionization mass spectrometry. Log‐phase promastigotes treated with 1 μM myriocin showed a 52% reduction in growth rate and morphological alterations such as more rounded shape and shorter flagellum. Promastigotes treated with myriocin also displayed a variety of aberrant cell phenotypes. The percentage of cells with one nucleus and one kinetoplast (1N1K), following treatment with 1 or 5 μM myriocin, decreased from 89% (control value) to 27% or 3%, respectively. The percentage of cells with two nuclei (2N2K) varied from 7% (control value) to 19% and 6% for 1 or 5 μM myriocin‐treated parasites, respectively. High percentage of myriocin‐treated parasites exhibited large atypical cells presenting three or more nucleus (32% and 89% for 1 or 5 μM myriocin, respectively). Transmission electron microscopy following treatment with 1 μM myriocin showed the presence of 4N parasites possibly as a result of an incomplete cytokinesis. Addition of 3‐ketodihidrosphingosine to myriocin‐treated promastigotes rescue parasite growth and morphology. Addition of ethanolamine did not rescue the myriocin effect on parasite. Our findings indicate that sphingolipids are essential for the completion of cytokinesis, and may play a major role in cell proliferation in L. (V.) braziliensis, thus, differing from data described for Leishmania major sphingolipid‐free mutant, where addition of ethanolamine rescue wild‐type parasite characteristics.  相似文献   

17.
The nectrotrophic fungus Alternaria alternata f.sp. lycopersici infects tomato plants of the genotype asc/asc by utilizing a host-selective toxin, AAL-toxin, that kills the host cells by inducing programmed cell death. Asc-1 is homologous to genes found in most eukaryotes from yeast to humans, suggesting a conserved function. A yeast strain with deletions in the homologous genes LAG1 and LAC1 was functionally complemented by Asc-1, indicating that Asc-1 functions in an analogous manner to the yeast homologues. Examination of the yeast sphingolipids, which are almost absent in the lag1Deltalac1Delta mutant, showed that Asc-1 was able to restore the synthesis of sphingolipids. We therefore examined the biosynthesis of sphingolipids in tomato by labeling leaf discs with l-[3-3H]serine. In the absence of AAL-toxin, there was no detectable difference in sphingolipid labeling between leaf discs from Asc/Asc or asc/asc leaves. In the presence of pathologically significant concentrations of AAL-toxin however, asc/asc leaf discs showed severely reduced labeling of sphingolipids and increased label in dihydrosphingosine (DHS) and 3-ketodihydrosphingosine (3-KDHS). Leaf discs from Asc/Asc leaves responded to AAL-toxin treatment by incorporating label into different sphingolipid species. The effects of AAL-toxin on asc/asc leaflets could be partially blocked by the simultaneous application of AAL-toxin and myriocin. Leaf discs simultaneously treated with AAL-toxin and myriocin showed no incorporation of label into sphingolipids or long-chain bases as expected. These results indicate that the presence of Asc-1 is able to relieve an AAL-toxin-induced block on sphingolipid synthesis that would otherwise lead to programmed cell death.  相似文献   

18.
The edema factor (EF) and lethal factor (LF) components of anthrax toxin require anthrax protective antigen (PA) for binding and entry into mammalian cells. After internalization by receptor-mediated endocytosis, PA facilitates the translocation of EF and LF across the membrane of an acidic intracellular compartment. To characterize the translocation process, we generated chimeric proteins composed of the PA recognition domain of LF (LFN; residues 1–255) fused to either the amino-terminus or the carboxy-terminus of the catalytic chain of diphtheria toxin (DTA). The purified fusion proteins retained ADP-ribosyltransferase activity and reacted with anti-sera against LF and diphtheria toxin. Both fusion proteins strongly inhibited protein synthesis in CHO-K1 cells in the presence of PA, but not in its absence, and they showed similar levels of activity. This activity could be inhibited by adding LF or the LFN fragment (which blocked the interaction of the fusion proteins with PA), by adding inhibitors of endo-some acidification known to block entry of EF and LF into cells, or by introducing mutations that attenuated the ADP-ribosylation activity of the DTA moiety. The results demonstrate that LFN fused to either the amino-terminus or the carboxy-terminus of a heterologous protein retains its ability to complement PA in mediating translocation of the protein to the cytoplasm. Besides its importance in understanding translocation, this finding provides the basis for constructing a translocation vector that mediates entry of a variety of heterologous proteins, which may require a free amino- or carboxy-terminus for biological activity, into the cytoplasm of mammalian cells.  相似文献   

19.
Diphtheria toxin forms pores in biological and model membranes upon exposure to low pH. These pores may play a critical role in the translocation of the A chain of the toxin into the cytoplasm. The effect of protein concentration on diphtheria toxin pore formation in model membrane systems was assayed by using a new fluorescence quenching method. In this method, the movement of Cascade Blue labeled dextrans of various sizes across membranes is detected by antibodies which quench Cascade Blue fluorescence. It was found that at low pH the toxin makes pores in phosphatidylcholine/phosphatidylglycerol vesicles with a size that depends on protein concentration. At the lowest toxin concentrations only the entrapped free fluorophore (MW 538) could be released from model membranes. At intermediate toxin concentrations, a 3 kD dextran could be released. At the highest toxin concentration, a 10 kD dextran could be released, but not a 70 kD dextran. Similar pore properties were found using vesicles lacking phosphatidylglycerol or containing 30% cholesterol. However, larger pores formed at lower protein concentrations in the presence of cholesterol. The dependence of pore size on toxin concentration suggests that toxin oligomerization regulates pore size. This behavior may explain some of the conflicting data on the size of the pores formed by diphtheria toxin. The formation of oligomers by membrane-inserted toxin is consistent with the results of chemical crosslinking and measurements of the self-quenching of rhodamine-labeled toxin. Based on these experiments we propose diphtheria toxin forms oligomers with a variable stoichiometry, and that pore size depends on the oligomerization state. Reasons why oligomerization could assist proper membrane insertion of the toxin and other proteins that convert from soluble to membrane-inserted states are discussed. Received: 10 March 1999/Revised: 22 June 1999  相似文献   

20.
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号