首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The normal CH2CH2SCH3 side-chain of Met52 of bovine pancreatic trypsin inhibitor was converted to CH2CH2S+(CH3)2 with methyl iodide. After unfolding and breakage of the three disulphide bonds, the reduced protein refolded some three to six times more slowly than unmodified bovine pancreatic trypsin inhibitor. This was shown to be due to the decreased occurrence of the normal one- and two-disulphide initial intermediates. Modifications of the Met52 side-chain suggest that it normally has an important conformational role in the initial stages of folding, participating in extensive hydrophobic interactions with other parts of the protein. This role is different from that in the final folded state, where modification produced no detectable change in stability.  相似文献   

3.
The structure and folding of basic pancreatic trypsin inhibitor (BPTI) has been studied extensively by experimental means. We report a computer simulation study of the structural stability of various disulfide mutants of BPTI, involving eight 250-psec molecular dynamics simulations of the proteins in water, with and without a phosphate counterion. The presence of the latter alters the relative stability of the single disulfide species [5–55] and [30–51]. This conclusion can explain results of mutational studies and the conservation of residues in homologues of BPTI, and suggests a possible role of ions in stabilizing one intermediate over another in unfolding or folding processes. © 1996 Wiley-Liss, Inc.  相似文献   

4.
5.
P Brandt  C Woodward 《Biochemistry》1987,26(11):3156-3167
Hydrogen exchange rates of six beta-sheet peptide amide protons in bovine pancreatic trypsin inhibitor (BPTI) have been measured in free BPTI and in the complexes trypsinogen-BPTI, trypsinogen-Ile-Val-BPTI, bovine trypsin-BPTI, and porcine trypsin-BPTI. Exchange rates in the complexes are slower for Ile-18, Arg-20, Gln-31, Phe-33, Tyr-35, and Phe-45 NH, but the magnitude of the effect is highly variable. The ratio of the exchange rate constant in free BPTI to the exchange rate constant in the complex, k/kcpIx, ranges from 3 to much greater than 10(3). Gln-31, Phe-45, and Phe-33 NH exchange rate constants are the same in each of the complexes. For Ile-18 and Tyr-35, k/kcpIx is much greater than 10(3) for the trypsin complexes but is in the range 14-43 for the trypsinogen complexes. Only the Arg-20 NH exchange rate shows significant differences between trypsinogen-BPTI and trypsinogen-Ile-Val-BPTI and between porcine and bovine trypsin-BPTI.  相似文献   

6.
We constructed a plasmid, designated pNPP126, containing a DNA sequence encoding a fusion protein composed of Bacillus amyloliquefaciens neutral protease prepeptide (signal peptide) and human pancreatic secretory trypsin inhibitor (hPSTI), where the mature hPSTI is accurately fused to the 3'-terminal of the prepeptide coding region. It was observed that the strain Bacillus subtilis MT600 harboring pNPP126 could secrete a trypsin inhibitory activity into the culture medium. The N-terminal amino acid sequence, the amino acid composition and the stoichiometry of the purified hPSTI produced by B. subtilis were the same as those of natural hPSTI, indicating that the transformant B. subtilis MT600 (pNPP126) could efficiently secrete the correctly processed and folded hPSTI into the culture medium.  相似文献   

7.
A gene for bovine pancreatic trypsin inhibitor (BPTI) was fused to the coding sequence for the Escherichia coli alkaline phosphatase signal peptide and expressed in E. coli under the control of the alkaline phosphatase promoter. When induced in phosphate-depleted medium such cells produced a trypsin inhibitor that was indistinguishable from native, properly folded BPTI. In particular, the BPTI produced by E. coli had three disulfide bonds that appeared to be identical to those found in native BPTI, as assayed by sensitivity to iodoacetate, dithiothreitol, and urea. This expression/secretion system will make possible the production of variant BPTI molecules, thus allowing the perturbing effects of amino acid substitutions on BPTI folding, structure, and function to be assessed.  相似文献   

8.
9.
We have studied the influence of pressure on structure and dynamics of a small protein belonging to the enzymatic catalysis: the bovine pancreatic trypsin inhibitor (BPTI). Using a copper-beryllium high-pressure cell, we have performed small angle neutron scattering (SANS) experiment on NEAT spectrometer at HMI (Berlin, Germany). In the SANS configuration, the evolution of the radius of gyration and of the shape of the protein under pressures up to 6,000 bar has been studied. When increasing pressure from atmospheric pressure up to 6,000 bar, the pressure effects on the global structure of BPTI result on a reduction of the radius of gyration from 13.4 A down to 12.0 A. Between 5,000 and 6,000 bar, some transition already detected by FTIR [N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, Biospectroscopy, 4, 1998, pp. 209-216] is observed. The pressure effect is not reversible because the initial value of the radius of gyration is not recovered after pressure release. By extending the range of wave-vectors to high q, we have observed a change of the form factor (shape) of the BPTI under pressure. At atmospheric pressure BPTI exhibits an ellipsoidal form factor that is characteristic of the native state. When the pressure is increased from atmospheric pressure up to 6,000 bar, the protein keeps its ellipsoidal shape. The parameters of the ellipsoid vary and the transition detected between 5,000 and 6,000 bar in the form factor of BPTI is in agreement with the FTIR results. After pressure release, the form factor of BPTI is characteristic of an ellipsoid of revolution with a semi-axis a, slightly elongated with respect to that of the native one, indicating that the pressure-induced structural changes on the protein are not reversible. The global motions and the internal dynamics of BPTI protein have been investigated in the same pressure range by quasi-elastic neutron scattering experiments on IN5 time-of-flight spectrometer at ILL (Grenoble, France). The diffusion coefficients D and the internal relaxation times of BPTI deduced from the analysis of the intermediate scattering functions show a slowing down of protein dynamics when increasing pressure.  相似文献   

10.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species.  相似文献   

11.
12.
Partially folded conformational ensembles of bovine pancreatic trypsin inhibitor (BPTI) are accessed by replacing Cys 5, 30, 51, and 55 by alpha-amino-n-butyric acid (Abu) while retaining the disulfide between Cys 14 and 38; the resultant variant is termed [14-38](Abu). Two new analogues with modifications in the beta-turn, P26D27[14-38](Abu) and N26G27K28[14-38](Abu), are compared to partially folded [14-38](Abu), as well as to [R](Abu), the unfolded protein with all six Cys residues replaced by Abu. Structural features of the new analogues of [14-38](Abu) have been determined by circular dichroism (CD), one-dimensional (1)H NMR, and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence experiments. Both analogues are more disordered than the parent [14-38](Abu), but while P26D27[14-38](Abu) has a small population of native-like conformations observed by NMR, no ordered structure is detected for N26G27K28[14-38](Abu). Trypsin inhibition assays were carried out using a modified rat trypsin, C191A/C220A, that minimizes cleavage of unfolded peptides. Both [14-38](Abu) and P26D27[14-38](Abu) significantly inhibit modified trypsin. N26G27K28[14-38](Abu) has low but measurable inhibitor activity, while [R](Abu) has no activity even when in very high molar excess relative to trypsin. ANS fluorescence is enhanced by [14-38](Abu) and by both variants but not by [R](Abu). We conclude that partially folded ensembles of BPTI, even those with little or no CD- or NMR-detectable structure, contain minor populations of native-like conformations. Partially folded [14-38](Abu) and both variants, as well as [R](Abu), have enhanced negative ellipticity in CD spectra acquired in the presence of the osmolyte trimethylamine N-oxide (TMAO). TMAO-induced structure is formed cooperatively, as indicated by thermal unfolding curves. Inhibitor activity as a function of TMAO concentration implies that the osmolyte-induced structure is native-like for [14-38](Abu) and P26D27[14-38](Abu) and is probably native-like for N26G27K28[14-38](Abu). [R](Abu) also shows increased CD-detected structure in the presence of TMAO, but such structure is likely to be collapsed and non-native.  相似文献   

13.
14.
The effects of 30-min intravenous infusions of ethanol (about 50 mm blood concentration), acetaldehyde (about 100 μm blood concentration), and acetate (equimolar dose to acetaldehyde) were studied in normal and adrenalectomized rats. Blood glucose, plasma free fatty acids (FFA), plasma immunoreactive insulin, and glucagon and hepatic glycogen concentrations were measured. Ethanol itself in the presence of 4-methylpyrazole (4-MP) produced no marked changes in the parameters measured. Its infusion without 4-MP reduced plasma insulin by 35% in the normal rats, but not in the adrenalectomized rats, with no simultaneous changes in blood glucose. Acetaldehyde infusion produced hyperglycemia and relatively slight hyperinsulinemia in the normal rats, but not in the adrenalectomized rats. Equimolar acetate was not as potent a stimulator of glycogenolysis as acetaldehyde. Plasma FFA concentrations were markedly reduced by ethanol (without 4-MP), acetaldehyde and acetate both in the normal and adrenalectomized rats, but in the presence of 4-MP ethanol was without effect. The results indicate that metabolites of ethanol (mostly acetaldehyde) produced during ethanol oxidation in vivo are responsible for the stimulation of glycogenolysis through the release of catecholamines from the adrenal glands. The ethanol-induced decrease in plasma FFA is also attributable to the metabolites of ethanol, acetaldehyde having a more potent depressing action than acetate. The mode of inhibition of lipolysis is not related to hormonal factors.  相似文献   

15.
16.
We have investigated the enzymatic properties of alpha 2-macroglobulin-bound porcine trypsin using a substrate: Z-Gly-Gly-Arg-p-nitroanilide and two inhibitors: p-aminobenzamidine and basic pancreatic trypsin inhibitor. The ternary alpha 2-macroglobulin-(trypsin)2 complex behaves like a mixture of two enzymes which bind basic pancreatic trypsin inhibitor with widely different affinities (Ki = 0.11 microM and 23 microM). About one-half of the trypsin molecules of the ternary complex are covalently bound to alpha 2-macroglobulin. Preparation of the complex in the presence of hydroxylamine prevents covalent bond formation, but the two trypsins of this artificial complex still exhibit large differences in affinity for basic pancreatic trypsin inhibitor. The trypsin molecules of the ternary complex also exhibit small differences in their affinity for Z-Gly-Gly-Arg-p-nitroanilide and p-aminobenzamidine.  相似文献   

17.
We have studied the thermal denaturation of native basic pancreatic trypsin inhibitor (BPTI) by monitoring the Raman bands in the 4000-400 cm(-1) range. In agreement with results obtained by calorimetry, a cooperative melting transition is observed starting at 75 degrees C. This transition is found to involve predominantly the unfolding of helical structures accompanied by beta-aggregation, loss of hydrophobic interactions between side chains and changes in CSSC dihedral angles. However, salt bridge breaking starts near 40 degrees C, as deduced from the nu(s)(COO(-)) band and from the bands close to 1320 and 1345 cm(-1) which for the first time have been shown to be due largely to vibrations of the arginine guanidyl group in BPTI. The thermal stability is, hence, attributable to cooperative contributions from hydrophobic and backbone hydrogen bond interactions as well as from disulfide bonds.  相似文献   

18.
Reduced bovine pancreatic trypsin inhibitor has a compact structure   总被引:4,自引:0,他引:4  
D Amir  E Haas 《Biochemistry》1988,27(25):8889-8893
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions.  相似文献   

19.
The effects of additives used to stabilize protein structure during crystallization on protein solution phase behavior are poorly understood. Here we investigate the effect of glycerol and ionic strength on the solubility and strength of interactions of the bovine pancreatic trypsin inhibitor. These two variables are found to have opposite effects on the intermolecular forces; attractions increase with [NaCl], whereas repulsions increase with glycerol concentration. These changes are mirrored in bovine pancreatic trypsin inhibitor solubility where the typical salting out behavior for NaCl is observed with higher solubility found in buffers containing glycerol. The increased repulsions induced by glycerol can be explained by a number of possible mechanisms, all of which require small changes in the protein or the solvent in its immediate vicinity. Bovine pancreatic trypsin inhibitor follows the same general phase behavior as other globular macromolecules where a robust correlation between protein solution second virial coefficient and solubility has been developed. This study extends previous reports of this correlation to solution conditions involving nonelectrolyte additives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号