首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The localized expression of Hedgehog (Hh) at the extreme anterior of Drosophila ovarioles suggests that it might provide an asymmetric cue that patterns developing egg chambers along the anteroposterior axis. Ectopic or excessive Hh signaling disrupts egg chamber patterning dramatically through primary effects at two developmental stages. First, excess Hh signaling in somatic stem cells stimulates somatic cell over-proliferation. This likely disrupts the earliest interactions between somatic and germline cells and may account for the frequent mis-positioning of oocytes within egg chambers. Second, the initiation of the developmental programs of follicle cell lineages appears to be delayed by ectopic Hh signaling. This may account for the formation of ectopic polar cells, the extended proliferation of follicle cells and the defective differentiation of posterior follicle cells, which, in turn, disrupts polarity within the oocyte. Somatic cells in the ovary cannot proliferate normally in the absence of Hh or Smoothened activity. Loss of protein kinase A activity restores the proliferation of somatic cells in the absence of Hh activity and allows the formation of normally patterned ovarioles. Hence, localized Hh is not essential to direct egg chamber patterning.  相似文献   

3.
In the Drosophila testis, germline stem cells (GSCs) and somatic cyst stem cells (CySCs) are arranged around a group of postmitotic somatic cells, termed the hub, which produce a variety of growth factors contributing to the niche microenvironment that regulates both stem cell pools. Here we show that CySC but not GSC maintenance requires Hedgehog (Hh) signalling in addition to Jak/Stat pathway activation. CySC clones unable to transduce the Hh signal are lost by differentiation, whereas pathway overactivation leads to an increase in proliferation. However, unlike cells ectopically overexpressing Jak/Stat targets, the additional cells generated by excessive Hh signalling remain confined to the testis tip and retain the ability to differentiate. Interestingly, Hh signalling also controls somatic cell populations in the fly ovary and the mammalian testis. Our observations might therefore point towards a higher degree of organisational homology between the somatic components of gonads across the sexes and phyla than previously appreciated.  相似文献   

4.
Identifying the signals involved in maintaining stem cells is critical to understanding stem cell biology and to using stem cells in future regenerative medicine. In the Drosophila ovary, Hedgehog is the only known signal for maintaining somatic stem cells (SSCs). Here we report that Wingless (Wg) signaling is also essential for SSC maintenance in the Drosophila ovary. Wg is expressed in terminal filament and cap cells, a few cells away from SSCs. Downregulation of Wg signaling in SSCs through removal of positive regulators of Wg signaling, dishevelled and armadillo, results in rapid SSC loss. Constitutive Wg signaling in SSCs through the removal of its negative regulators, Axin and shaggy, also causes SSC loss. Also, constitutive wg signaling causes over-proliferation and abnormal differentiation of somatic follicle cells. This work demonstrates that wg signaling regulates SSC maintenance and that its constitutive signaling influences follicle cell proliferation and differentiation. In mammals, constitutive beta-catenin causes over-proliferation and abnormal differentiation of skin cells, resulting in skin cancer formation. Possibly, mechanisms regulating proliferation and differentiation of epithelial cells, including epithelial stem cells, is conserved from Drosophila to man.  相似文献   

5.
A dynamic pool of undifferentiated somatic stem cells proliferate and differentiate to replace dead or dying mature cell types and maintain the integrity and function of adult tissues. Intestinal stem cells (ISCs) in the Drosophila posterior midgut are a well established model to study the complex genetic circuitry that governs stem cell homeostasis. Exposure of the intestinal epithelium to environmental toxins results in the expression of cytokines and growth factors that drive the rapid proliferation and differentiation of ISCs. In the absence of stress signals, ISC homeostasis is maintained through intrinsic pathways. In this study, we uncovered the PDGF- and VEGF-receptor related (Pvr) pathway as an essential regulator of ISC homeostasis under unstressed conditions in the posterior midgut. We found that Pvr is coexpressed with its ligand Pvf2 in ISCs and that hyperactivation of the Pvr pathway distorts the ISC developmental program and drives intestinal dysplasia. In contrast, we show that mutant ISCs in the Pvf/Pvr pathway are defective in homeostatic proliferation and differentiation, resulting in a failure to generate mature cell types. Additionally, we determined that extrinsic stress signals generated by enteropathogenic infection are epistatic to the hypoplasia generated in Pvf/Pvr mutants, making the Pvr pathway unique among all previously studied intrinsic pathways. Our findings illuminate an evolutionarily conserved signal transduction pathway with essential roles in metazoan embryonic development and direct involvement in numerous disease states.  相似文献   

6.
Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion.  相似文献   

7.
8.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

9.
Understanding how stem-cell proliferation is controlled to maintain adult tissues is of fundamental importance. Drosophila oogenesis provides an attractive system to study this issue since cell production in the ovary depends on small populations of observable germ-line and somatic stem cells. By controlling the amount of protein-rich nutrients in the diet, we established conditions under which the rate of egg production varied 60-fold. Using a cell-lineage labeling system, we found that both germ-line and somatic stem cells, as well as their progeny, adjust their proliferation rates in response to nutrition. However, the number of active stem cells does not appear to change. Proliferation rates varied fourfold; the remaining 15-fold difference in egg production resulted from different frequencies of cell death at two precise developmental points: (1) the region 2a/2b transition within the germarium, and (2) stage 8 egg chambers that are entering vitellogenesis. To initiate a genetic analysis of these changes in cell proliferation and apoptosis, we show that ovarian cells require an intact insulin pathway to fully upregulate their rate of cycling in response to a protein-rich diet and to enter vitellogenesis.  相似文献   

10.
Li Q  Xin T  Chen W  Zhu M  Li M 《Cell research》2008,18(3):372-384
The intricately regulated differentiation of the somatic follicle cell lineages into distinct subpopulations with specific functions plays an essential role in Drosophila egg development. At early oogenesis, induction of the stalk cells generates the first anteroposterior (AP) asymmetry in the egg chamber by inducing the posterior localization of the oocyte. Later, the properly specified posterior follicle cells signal to polarize the oocyte along the AP and dorsoventral (DV) axes at mid-oogenesis. Here, we show that lethal(2)giant larvae (lgl), a Drosophila tumor suppressor gene, is required in the follicle cells for the differentiation of both stalk cells and posterior follicle cells. Loss-of-function mutations in lgl cause oocyte mispositioning in the younger one of the fused chambers, due to lack of the stalk. Removal of lgl function from the posterior follicle cells using the FLP/FRT system results in loss of the oocyte polarity that is elicited by the failure of those posterior cells to differentiate normally. Thus, we provide the first demonstration that lgl is implicated in the formation of the initial AP asymmetry and the patterning of the AP and DV axes in the oocyte by acting in the specification of a subset of somatic follicle cells.  相似文献   

11.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

12.
13.
14.
Drosophila oogenesis provides an excellent opportunity to study fundamental aspects of developmental biology and to learn the importance of multiple signalling pathways in the regulation of cellular morphogenesis. Taking advantage of the genetic and molecular approaches extremely powerful in this organism, over the years an enormous collection of data has accumulated on the genes involved in important steps of egg chamber development, such as germline and somatic stem cell maintenance, division and differentiation; oocyte determination and positioning; establishment of follicle cell fate and axes formation. These different processes are mediated by a reciprocal cross-talk between germline and somatic follicle cells. Here, in a schematic and simplified form, we point out what we believe are the main recent results on the molecular and cellular mechanisms underlying ovarian development and outline our recent contribution to this field.  相似文献   

15.
Eyes absent,a key repressor of polar cell fate during Drosophila oogenesis   总被引:3,自引:0,他引:3  
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.  相似文献   

16.
Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation.  相似文献   

17.
18.
The Müller cell is the only glial cell type generated from the retinal neuroepithelium. This cell type controls normal retina homeostasis and has been suggested to play a neuroprotective role. Recent evidence suggests that mammalian Müller cells can de-differentiate and return to a progenitor or stem cell stage following injury or disease. In vivo exploration of the molecular mechanisms of Müller cell differentiation and proliferation will add essential information to manipulate Müller cell functions. Signal transduction pathways that regulate Müller cell responses and activity are a critical part of their cellular machinery. In this study, we focus on mitogen-activated protein kinase (MAPK) signaling pathway during Müller glial cell differentiation and proliferation. We found that both MAPK and STAT3 signaling pathways are present during Müller glial cell development. Ciliary neurotrophic factor (CNTF)-stimulated Müller glial cell proliferation is associated with early developmental stages. Specific inhibition of MAPK phosphorylation significantly reduced the number of Müller glial cells with or without CNTF stimulation. These results suggested that the MAPK signal transduction pathway is important in the formation of Müller glial cells during retina development.  相似文献   

19.
The Drosophila ovary provides a model system for studying the mechanisms that regulate the differentiation of somatic stem cells into specific cell types. Ovarian somatic stem cells produce follicle cells, which undergo a binary choice during early differentiation. They can become either epithelial cells that surround the germline to form an egg chamber ('main body cells') or a specialized cell lineage found at the poles of egg chambers. This lineage goes on to make two cell types: polar cells and stalk cells. To better understand how this choice is made, we carried out a screen for genes that affect follicle cell fate specification or differentiation. We identified extra macrochaetae (emc), which encodes a helix-loop-helix protein, as a downstream effector of Notch signaling in the ovary. EMC is expressed in proliferating cells in the germarium, as well as in the main body follicle cells. EMC expression in the main body cells is Notch dependent, and emc mutant cells located on the main body failed to differentiate. EMC expression is reduced in the precursors of the polar and stalk cells, and overexpression of EMC caused dramatic egg chamber fusions, indicating that EMC is a negative regulator of polar and/or stalk cells. EMC and Notch were both required in the main body cells for expression of Eyes Absent (EYA), a negative regulator of polar and stalk cell fate. We propose that EMC functions downstream of Notch and upstream of EYA to regulate main body cell fate specification and differentiation.  相似文献   

20.
Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号