首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

2.
To elucidate the role of the cytoskeleton in the development of adult heart, microtubules and intermediate filaments of desmin were studied in young and adult rat heart myocytes during the onset of growth, after mechanical overloading induced by aortic stenosis. Such overloading is known to cause heart hypertrophy by stimulating overall protein synthesis, and to initiate a shift in myosin isozymes. For this study, we used double immunolabelling of isolated myocytes with specific antibodies raised against tubulin, desmin, and the two main isomyosins V1 and V3. Whereas desmin remained unchanged, tubulin was redistributed in arrays parallel to the long axis of the myocytes, and was densest around the nuclei. Alterations in the microtubule pattern were observed very early after aortic stenosis, during the onset of heart growth; they were transitory, and did not occur simultaneously in all myocytes. Chronological examination of myocytes labelling with both antitubulin and anti V3 myosin clearly suggested that the transitory alteration in the microtubule pattern was an early event preceding the change in the expression of the myosin gene. Results, observed in young rats, in which mitosis is stimulated by overloading, and in adult rats, exhibiting no mitosis, showed that microtubules are involved in the development of cells in which mitosis does not occur. This work provides the first evidence of a correlation in functional adult heart, between the reorganization of cytoplasmic microtubules and the onset of growth.  相似文献   

3.
Isolated myocytes were purified from adult rat heart. Identification and localization of microtubules and quantitation of tubulin in these cells were performed by immunochemical procedures. Antibodies were raised against brain tubulin and purified by affinity chromatography. An enzyme-linked immunosorbent assay, ELISA, was developed for quantitation of tubulin. It allowed the measurement of 10 to 500 ng of tubulin. Tubulin content in adult rat cardiac myocytes was found to be approximately 10 micrograms per 100 mg of the total protein content. By means of a double immunofluorescence technique, the microtubule network, identified with antitubulin, was studied in reference to the sarcomeric A band labeled with antibodies specific to myosin heavy chains. The basis for identifying the microtubule network have included the use of specific antitubulin immunoglobulins and the sensitivity of the specific labeling of the network to antimitotic drugs and low temperature. It was found that microtubules were organized mainly around the nuclei, with important concentrations at the poles, showing extensions in the cone and in the cytoplasm as loosely organized loops. The shape of adult cardiac myocyte was not dependent upon the integrity of the microtubule network.  相似文献   

4.
Little is known about the subcellular distribution and the dynamics of tubulins in adult cardiac myocytes although both are modified during cardiac hypertrophy and heart failure. Using confocal microscopy, we examined post-translational modifications of tubulin in fully differentiated ventricular myocytes isolated from adult rat hearts, as well as in immortalized and dividing HL-1 cardiomyocytes. Detyrosinated Glu-alpha-tubulin was the most abundant post-translationally modified tubulin found in ventricular myocytes, while acetylated- and delta2-alpha-tubulins were found in lower amounts or absent. In contrast, dividing HL-1 cardiomyocytes exhibited high levels of tyrosinated or acetylated alpha-tubulins. A mild nocodazole treatment (0.1 microM, 1 h) disrupted microtubules in HL-1 myocytes, but not in adult ventricular myocytes. A stronger treatment (10 microM, 2 h) was required to disassemble tubulins in adult myocytes. Glu-alpha-tubulin containing microtubules were more resistant to nocodazole treatment in HL-1 cardiomyocytes than in ventricular myocytes. Endogenous activation of the cAMP pathway with the forskolin analog L858051 (20 microM) or the beta-adrenergic agonist isoprenaline (10 microM) disrupted the most labile microtubules in HL-1 cardiomyocytes. In contrast, isoprenaline (10 microM), cholera toxin (200 ng/ml, a G(S)-protein activator), L858051 (20 microM) or forskolin (10 microM) had no effect on the microtubule network in ventricular myocytes. In addition, intracellular Ca2+ accumulation induced either by thapsigargin (2 microM) or caffeine (10 mM) did not modify microtubule stability in ventricular myocytes. Our data demonstrate the unique stability of the microtubule network in adult cardiac myocytes. We speculate that microtubule stability is required to support cellular integrity during cardiac contraction.  相似文献   

5.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

6.
The cytoskeleton is known to play an important role in the biomechanical nature and structure of cells, but its particular function in compressive characteristics has not yet been fully examined. This study focused on the contribution of the main three cytoskeletal elements to the bulk compressive stiffness (as measured by the compressive modulus), volumetric or apparent compressibility changes (as further indicated by apparent Poisson's ratio), and recovery behavior of individual chondrocytes. Before mechanical testing, cytochalasin D, acrylamide, or colchicine was used to disrupt actin microfilaments, intermediate filaments, or microtubules, respectively. Cells were subjected to a range of compressive strains and allowed to recover to equilibrium. Analysis of the video recording for each mechanical event yielded relevant compressive properties and recovery characteristics related to the specific cytoskeletal disrupting agent and as a function of applied axial strain. Inhibition of actin microfilaments had the greatest effect on bulk compressive stiffness (∼50% decrease compared to control). Meanwhile, intermediate filaments and microtubules were each found to play an integral role in either the diminution (compressibility) or retention (incompressibility) of original cell volume during compression. In addition, microtubule disruption had the largest effect on the “critical strain threshold” in cellular mechanical behavior (33% decrease compared to control), as well as the characteristic time for recovery (∼100% increase compared to control). Elucidating the role of the cytoskeleton in the compressive biomechanical behavior of single cells is an important step toward understanding the basis of mechanotransduction and the etiology of cellular disease processes.  相似文献   

7.
The cytoskeleton as classically defined for eukaryotic cells consists of three systems of protein filaments: the microtubules, the intermediate filaments, and the microfilaments. In mature striated muscle such as the heart of the adult mammal, these three types of cytoskeletal filaments are superimposed spatially on the myofilaments, a specialized system of contractile protein filaments. Each of these systems of protein filaments has the potential to respond in an adaptive or maladaptive manner during load-induced hypertrophic cardiac growth. However, the extent to which such hypertrophy is compensatory is also critically dependent on the type of hemodynamic overload that serves as the hypertrophic stimulus. Thus cardiac hypertrophy is not intrinsically maladaptive; rather, it is the nature of the inducing load rather than hypertrophy itself that is responsible, through effects on structural and/or regulatory proteins, for the frequent deterioration of initially compensatory hypertrophy into the congestive heart failure state. As one example reviewed here of this load specificity of maladaptation, increased microtubule network density is a persistent feature of severely pressure-overloaded, hypertrophied, and failing myocardium that imposes a primarily viscous load on active myofilaments during contraction.  相似文献   

8.
Although disruption of the microtubule (MT) array inhibits myogenesis in myocytes, the relationship between the assembly of microtubules (MT) and the organization of the contractile filaments is not clearly defined. We now report that the assembly of mature myofibrils in hypertrophic cardiac myocytes is disrupted by myoseverin, a compound previously shown to perturb the MT array in skeletal muscle cells. Myoseverin treated cardiac myocytes showed disruptions of the striated Z-bands containing alpha-actinin and desmin and the localization of tropomyosin, titin and myosin on mature sarcomeric filaments. In contrast, MT depolymerization by nocodazole did not perturb sarcomeric filaments. Similarly, expression of constitutively active stathmin as a non-chemical molecular method of MT depolymerization did not prevent sarcomere assembly. The extent of MT destabilization by myoseverin and nocodazole were comparable. Thus, the effect of myoseverin on sarcomere assembly was independent of its capacity for MT inhibition. Furthermore, we found that upon removal of myoseverin, sarcomeres reformed in the absence of an intact MT network. Sarcomere formation in cardiac myocytes therefore, does not appear to require an intact MT network and thus we conclude that a functional MT array appears to be dispensable for myofibrillogenesis.  相似文献   

9.
Summary Over the last 25 yr, success in characterizing the individual protein components of animal cytoskeletons was possible, in part, due to technical advances in the isolation and purification of anucleate cytoskeletons from animal cells. As a step towards characterizing protein components of the plant cytoskeleton, we have isolated cytoskeletons from cytoplasts (anucleate protoplasts) prepared from cotton fiber cells grown in ovule culture. Cytoplasts isolated into a hypertonic, Ca2+-free medium at pH 6.8 retained internal structures after extraction with the detergent, Triton X-100. These structures were shown to include microtubule and microfilament arrays by immunofluorescence and electron microscopy. Actin and tubulin were the only abundant proteins in these preparations, suggesting that microfilaments and microtubules were the major cytoskeleta elements in the isolated cytoskeletons. The absence of additional, relatively abundant proteins suggests that (a) other cytoskeletal arrays potentially present in fiber cells (e.g., intermediate filaments) were either lost during detergent extraction or were minor components of the fiber cell cytoskeleton; and (b) high ratios of individual cytoskeletal-associated proteins relative to actin and tubulin were not required to maintain microtubules and microfilaments in organized structures.  相似文献   

10.
The membrane skeleton in spherical cardiac myocytes subjected to hypo-osmotic challenge was examined by laser scanning confocal microscopy. A distinct cortical layer intimately localized under the plasmalemma was revealed for spectrin and actin (including filamentous actin and alpha-sarcomeric actin). Desmin filaments were abundant and in close contact with the plasmalemma. During swelling and subsequent regulatory volume decrease (RVD) the structural integrity of these cytoskeletal elements remained intact, and the close association between actin and plasmalemma persisted as confirmed by double immunolabeling. Subplasmalemmal beta-tubulin labeling was sparse. Hypo-osmotic conditions disrupted the microtubules and depolymerized tubulin. Neither pretreatment with taxol nor with colchicine, resulted in any effect on cell volume regulation. The present results show that actin, desmin, and spectrin contribute to a subplasmalemmal cytoskeletal network in spherical cardiac myocytes, and that this membrane skeleton remains structurally intact during swelling and RVD. It is suggested that the integrity of this membrane skeleton is important for stabilization of the plasmalemma and the membrane-integrated proteins during hypo-osmotic challenge, and that it may participate in the regulation of the cell volume.  相似文献   

11.
Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because labeled microtubules and microfilaments gradually decreased, the rate of cytoskeleton disassembly was greater than the rate of cytoskeleton assembly. Hence, ooplasmic segregation was accompanied by the rapid turnover of cytoskeletal components. Co-distribution of F- and-G-actin during mid and late interphase may favor polymer-monomer interchange. We conclude that cytoskeleton reorganization during foundation of cytoplasmic domains can be conveniently studied in the live leech zygote after microinjection of labeled precursors.  相似文献   

12.
This review highlights the effects of ??classic?? phytohormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene, and brassinosteroids) and also of important signaling molecules, such as jasmonic acid, strigolactones, and nitric oxide, on the main components of the plant cytoskeleton, microtubules and microfilaments. The effects of these growth regulators on orientation and organization of microtubules and actin filaments, realization of cytoskeleton-dependent processes, expression of tubulin and actin genes, and interaction of various phytohormones in their influence on the cytoskeleton are discussed.  相似文献   

13.
The anti-cancer taxoids, Taxol® (paclitaxel) and Taxotere® (docetaxel), are the most promising anti-mitotic agents developed for cancer treatment in the past decade. The effectiveness of this new class of compounds lies in their unique mechanism of action on the cytoskeleton. Both taxol and taxotere bind to microtubules and shift the normal equilibrium between monomeric and polymerized tubulin to favor the polymerized form by strongly promoting tubulin assembly and inhibiting microtubule depolymerization. Although very similar in structure, these two compounds have recently demonstrated different in vitro, in vivo, and clinical activities; however, no study to date has effectively compared specific cytoskeletal alterations induced by taxol and taxotere in cultured cells. Using specific staining techniques for both F-actin and α-tubulin, this study provides the first detailed immunohistochemical comparison of the effects of equimolar concentrations of taxol and taxotere on both the microfilament and microtubule networks in a cultured cell line. Using human MCF7 breast adenocarcinoma cells, new observations of taxotere/taxol alterations of the cytoskeleton include: an increased abundance of parallel microtubule ‘bundles’ in taxotere treated cells and a definitive reorganization of the microfilament network which results in novel ring-like formations of F-actin condensed exclusively in the perinuclear zone. Reorganization of the actin cytoskeleton induced by a taxoid disruption of the microtubule equilibrium is indicative of the interdependence between microtubules and microfilaments in this transformed cell line and suggests that the indirect role of the taxoids on the microfilament network may have been overlooked in their mechanism of action as chemotherapeutic agents.  相似文献   

14.
The cytoskeleton consists of three distinct types of protein polymer structures–microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation–a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.  相似文献   

15.
Benign prostatic hypertrophy and posterior urethral valves present at both extremes of the age spectrum. Both disease processes can obstruct the urinary stream and ultimately have pathophysiological effects on detrusor structure and function. The mechanisms regulating the structural reorganization of the detrusor to a mechanical outflow obstruction are not known. In an attempt to identify maturational differences in myocyte ultrastructure and consequent effects these might have in modifying the response of the detrusor to mechanical stimulus, we studied differences in dynamic nuclear-cytoskeletal interactions in detrusor tissue in an animal model. Using a drug which specifically severs actin, cytochalasin D (CD), as an intracellular mechanical stimulus, we measured changes in nuclear area and the rate of DNA synthesis in detrusor myocytes from young (2-3 week) and old (8-12 mon) guinea pigs. We found that there were age specific differences to intracellular mechanical stimuli in detrusor muscle. Nuclei of myocytes from young animals showed elastic recoil on severing the cell actin matrix and the tissue from young animals increased replicative DNA synthesis with an intracellular stimulus. In contrast, nuclear shape changes in myocytes from old animals suggested less elasticity, and there was no increase in DNA synthesis with disruption of the cell actin matrix. Anti-alpha-smooth muscle actin antibody and rhodamine phalloidin staining of actin in cytochalasin D treated primary explants of detrusor myocytes showed dose dependent disruption of the actin component of the cytoskeleton. These results suggest that there are fundamental modifications in detrusor myocyte ultrastructure with age. These maturational changes might result in differences in the pathophysiological and structural reorganization of the detrusor in response to outflow obstruction in infancy and adulthood. Furthermore, they suggest that 1) a tensile equilibrium exists between the myocyte nucleus and cytoskeleton; 2) there appears to be a decrease in myocyte nuclear elasticity with ageing; 3) release of nuclear template restrictions increases activity of DNA polymerase alpha in young, but not old, detrusor myocytes; and 4) mechanico-chemical signal transduction in detrusor myocytes may be mediated via the cytoskeleton. In addition, based on previous reports of actin within the nucleus, the results suggest that 1) nuclear actin may have a homeostatic structural role, maintaining the tensile equilibrium between nucleus and cytoskeleton, and 2) integrity of nuclear actin may function to maintain the spatial template restriction on DNA polymerase alpha activity.  相似文献   

16.
Wang P  Li JC 《Life sciences》2007,81(14):1130-1140
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-cancer activities through apoptosis pathway. However, little is known about the effects of TCS on the cytoskeleton configuration and expression of actin and tubulin genes in Hela cell apoptosis. In the present study, apoptotic cytoskeleton structures were observed by confocal immunofluorescence microscopy, absolute amounts of actin and tubulin subunit mRNAs were determined by quantitative real-time PCR assays (QRT-PCR). Our results showed that the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization, depolymerized microfilaments (MFs) accumulated in the coarsened cytoplasm and apoptotic bodies, followed by the formation of a ring microtubule (MT) structure beneath the plasma membrane. Importantly, apoptosis occurred by a suppression of actin and tubulin subunit gene expression. In particular, a rapid decrease in the amounts of gamma-actin mRNA preceded that of beta-actin; alpha- and beta-tubulin mRNAs were subsequently down-regulated in the later stage of Hela cell apoptosis. These results suggested that the execution of Hela cell apoptosis induced by TCS accompanied the specific changes of cytoskeleton configuration and, significantly, decreased the expression level of actin and tubulin subunit genes in different stages.  相似文献   

17.
Plakins are cytoskeletal linker proteins initially thought to interact exclusively with intermediate filaments (IFs), but recently were found to associate additionally with actin and microtubule networks. Here, we report on ACF7, a mammalian orthologue of the Drosophila kakapo plakin genetically involved in epidermal-muscle adhesion and neuromuscular junctions. While ACF7/kakapo is divergent from other plakins in its IF-binding domain, it has at least one actin (K(d) = 0.35 microM) and one microtubule (K(d) approximately 6 microM) binding domain. Similar to its fly counterpart, ACF7 is expressed in the epidermis. In well spread epidermal keratinocytes, ACF7 discontinuously decorates the cytoskeleton at the cell periphery, including microtubules (MTs) and actin filaments (AFs) that are aligned in parallel converging at focal contacts. Upon calcium induction of intercellular adhesion, ACF7 and the cytoskeleton reorganize at cell-cell borders but with different kinetics from adherens junctions and desmosomes. Treatments with cytoskeletal depolymerizing drugs reveal that ACF7's cytoskeletal association is dependent upon the microtubule network, but ACF7 also appears to stabilize actin at sites where microtubules and microfilaments meet. We posit that ACF7 may function in microtubule dynamics to facilitate actin-microtubule interactions at the cell periphery and to couple the microtubule network to cellular junctions. These attributes provide a clear explanation for the kakapo mutant phenotype in flies.  相似文献   

18.
The role of the cytoskeleton in the regulation of chloroplast motility and positioning has been investigated by studying: (1) structural relationship of actin microfilaments, microtubules, and chloroplasts in cryofixed and freeze-substituted leaf cells of Arabidopsis; and (2) the effects of anti-actin (Latrunculin B; LAT-B) and anti-microtubule (Oryzalin) drugs on intracellular distribution of chloroplasts. Immunolabeling of leaf cells with two plant-actin specific antibodies, which react equivalently with all the expressed Arabidopsis actins, revealed two arrangements of actin microfilaments: longitudinal arrays of thick actin bundles and randomly oriented thin actin filaments that extended from the bundles. Chloroplasts were either aligned along the actin bundles or closely associated with the fine filaments. Baskets of actin microfilaments were also observed around the chloroplasts. The leaf cells labeled with an anti-tubulin antibody showed dense transverse arrays of cortical microtubules that exhibited no apparent association with chloroplasts. The application of LAT-B severely disrupted actin filaments and their association with chloroplasts. In addition, LAT-B induced aberrant aggregation of chloroplasts in the mesophyll and bundle sheath cells. Double labeling of LAT-B treated cells with anti-actin and anti-tubulin antibodies revealed that the microtubules in these cells were unaffected. Moreover, depolymerization of microtubules with Oryzalin did not affect the distribution of chloroplasts. These results provide evidence for the involvement of actin, but not tubulin, in the movement and positioning of chloroplasts in leaf cells. We propose that using motor molecules, some chloroplasts migrate along the actin cables directly, while others are pulled along the cables by the fine actin filaments. The baskets of microfilaments may anchor the chloroplasts during streaming and allow control over proper three-dimensional orientation to light.  相似文献   

19.
The formation and bipolar translocation of an ectoplasmic cytoskeleton of rings and meridional bands was studied in interphase zygotes of the glossiphoniid leech Theromyzon trizonare. Zygotes consisted of a peripheral organelle-rich ectoplasm and an internal yolk-rich endoplasm. After microinjection of labeled tubulin and/or actin, zygotes were examined by time-lapse video imaging, immunofluorescence and confocal microscopy. The rings and meridional bands were formed by condensation of a network of moving cytasters that represented ectoplasmic secondary centers of microtubule and actin filament nucleation. In some cases the network of cytasters persisted between the rings. The cytoskeleton had an outer actin layer and an inner microtubule layer that merged at the irregularly-shaped boundary zone. Bipolar translocation of the rings, meridional bands, or the network of cytasters led to accumulation of the cytoskeleton at both zygote poles. Translocation of the cytoskeleton was slowed or arrested by microinjected taxol or phalloidin, in a dose-dependent fashion. Results of drug treatment probably indicate differences in the degree and speed at which the cytoskeleton becomes stabilized. Moreover, drugs that selectively stabilized either microtubules or actin filaments stabilized and impaired movement of the entire cytoskeleton. Microtubule poisons and latrunculin-B failed to disrupt the cytoskeleton. It is concluded that the microtubule and actin cytoskeletons are dynamic, presumably cross-linked and resistant to depolymerizing drugs. They probably move along each other by a sliding mechanism that depends on the instability of microtubules and actin filaments.  相似文献   

20.
Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号