首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
目的 研究大鼠骨骼肌损伤后中性粒细胞、巨噬细胞和肌成纤维细胞数量的变化情况,为今后骨骼肌损伤修复的病理学机制研究打下坚实的基础.方法 建立大鼠骨骼肌机械性损伤动物模型,随机分为伤后6h、12h、1d、3d、7d、10d、14d及正常对照组.应用免疫组织荧光染色和免疫组织化学染色,检测大鼠骨骼肌损伤后不同时间点中性粒细胞、巨噬细胞和肌成纤维细胞的数量.结果 伤后6h-12h,损伤区可见中性粒细胞和巨噬细胞浸润,中性粒细胞数量达到高峰.伤后1d,损伤区巨噬细胞数量急剧增加,迅速达到高峰,而中性粒细胞数量开始下降.伤后3d,中性粒细胞和巨噬细胞数量都显著下降.伤后7d,肌成纤维细胞开始出现.到伤后10d-14d,损伤区主要以肌成纤维细胞为主,偶见巨噬细胞.结论 大鼠骨骼肌损伤区中性粒细胞、巨噬细胞和肌成纤维细胞数量呈时间规律性变化,以期为骨骼肌损伤修复的病理学机制研究提供参考资料.  相似文献   

2.
趋化性是中性粒细胞参与机体对抗病原体的一个基本的细胞反应。中性粒细胞的趋化过程中涉及一系列信号通路来调节其运动性和极性。信号分子磷酸酰肌醇三磷酸及其参与的信号通路在中性粒细胞趋化过程中起着重要的作用,其自身的生成也受到一系列复杂因素的调节。  相似文献   

3.
中性粒细胞是机体外周血中数量最多的白细胞,在人体非特异性免疫系统中发挥着十分重要的作用.早期的研究认为,中性粒细胞能通过分泌细胞因子和产生活性氧等物质杀伤肿瘤.然而随着研究的深入,发现肿瘤微环境中的中性粒细胞对肿瘤的发展起到促进的作用.浸润性中性粒细胞产生的细胞因子和趋化因子能影响肿瘤微环境中炎症细胞的招募和激活,为肿瘤的发展提供良好的免疫抑制微环境,调控肿瘤的生长、转移和血管生成,还在肿瘤患者预后评估方面发挥着重要的作用.  相似文献   

4.
采用Peter等方法评价灯盏细辛有效部位注射液对电刺激大鼠颈动脉血栓形成的作用;应用玫瑰花结试验和Born氏法观察本品对大鼠中性粒细胞与血小板之间粘附和聚集的影响以探讨其抗血栓作用的细胞机制.结果表明,本品50 mg/kg使血栓形成时间从对照组的17.7士0.8 min延长到35.7±2.6min(P<0.05);显著降低凝血酶激活的中性粒细胞与血小板间的粘附率,其IC50为61.4 mg/L,且明显抑制激活的中性粒细胞或其上清液引起的血小板聚集,其IC50分别为0.97和2.1 g/L,提示灯盏细辛有效部位具有较强抗血栓作用,其原理可能与抑制中性粒细胞与血小板之间的相互作用有关.  相似文献   

5.
 为澄清中性粒细胞胞浆 Ca2 +和某些 O-·2 产生相关激酶对 NADPH氧化酶激活和肌动蛋白聚合的作用 ,利用分化为中性粒细胞样的 HL- 60细胞研究了胞浆 Ca2 +螯合剂 BAPTA- AM和激酶抑制剂对这些激酶激活、NADPH氧化酶激活和肌动蛋白聚合的影响 .使用 1 0 μmol/L的 Ca2 +螯合剂 BAPTA- AM去除胞浆 Ca2 +后 ,趋化肽 f MLP诱导的 O-·2 产生明显减少 ,但不影响 f MLP诱导的肌动蛋白聚合 ;8μmol/L的 PKC激酶抑制物 GF1 0 92 0 3x几乎完全抑制 O-·2 产生 ;50 μmol/L的p38激酶抑制物 SB2 0 3580、50 μmol/L的 ERK激酶抑制物 PD0 980 59和 0 .1 μmol/L的 PI3激酶抑制物渥曼青霉素 (Wortmannin)使 f MLP诱导的 O-·2 产生大约减少一半 ;其中 Wortmannin还抑制 f MLP诱导的肌动蛋白聚合 ;f MLP刺激细胞后 ,PI3- K、p38和 ERK激酶迅速激活 ,但这些激酶的激活对 Ca2 +是非必需的 .这些结果说明 Ca2 +依赖途径 (PKC)和 Ca2 +非依赖途径 (PI3- K、p38和ERK)对 NADPH氧化酶激活都起着重要作用 ,而 Ca2 +非依赖途径中的 PI3- K激酶还参与中性粒细胞样 HL- 60细胞的肌动蛋白聚合 .  相似文献   

6.
为澄清中性粒细胞胞浆 Ca2 和某些 O-·2 产生相关激酶对 NADPH氧化酶激活和肌动蛋白聚合的作用 ,利用分化为中性粒细胞样的 HL- 60细胞研究了胞浆 Ca2 螯合剂 BAPTA- AM和激酶抑制剂对这些激酶激活、NADPH氧化酶激活和肌动蛋白聚合的影响 .使用 1 0 μmol/L的 Ca2 螯合剂 BAPTA- AM去除胞浆 Ca2 后 ,趋化肽 f MLP诱导的 O-·2 产生明显减少 ,但不影响 f MLP诱导的肌动蛋白聚合 ;8μmol/L的 PKC激酶抑制物 GF1 0 92 0 3x几乎完全抑制 O-·2 产生 ;50 μmol/L的p38激酶抑制物 SB2 0 3580、50 μmol/L的 ERK激酶抑制物 PD0 980 59和 0 .1 μmol/L的 PI3激酶抑制物渥曼青霉素 (Wortmannin)使 f MLP诱导的 O-·2 产生大约减少一半 ;其中 Wortmannin还抑制 f MLP诱导的肌动蛋白聚合 ;f MLP刺激细胞后 ,PI3- K、p38和 ERK激酶迅速激活 ,但这些激酶的激活对 Ca2 是非必需的 .这些结果说明 Ca2 依赖途径 (PKC)和 Ca2 非依赖途径 (PI3- K、p38和ERK)对 NADPH氧化酶激活都起着重要作用 ,而 Ca2 非依赖途径中的 PI3- K激酶还参与中性粒细胞样 HL- 60细胞的肌动蛋白聚合 .  相似文献   

7.
疼痛多肽肾上腺髓质素(adrenomedullin,AM)在病理性疼痛的产生中发挥重要作用。本研究旨在探讨AM在骨癌痛中的作用及其机制。在Sprague Dawley(SD)大鼠胫骨骨髓腔接种Walker 256乳腺癌细胞建立骨癌痛模型,术后15天鞘内插管给予选择性AM受体拮抗剂AM_(22-52),检测大鼠机械痛阈变化,用实时荧光定量PCR(quantitative real-time PCR,q PCR)检测背根神经节(dorsal root ganglion,DRG)CC趋化因子配体2(CC chemokine ligand 2,CCL2)m RNA表达变化,用免疫荧光双标染色法检测CCL2和AM在DRG中的表达定位。结果显示,肿瘤细胞接种第6至15天,骨癌痛大鼠接种侧后足机械痛阈降低;接种后第15天胫骨骨质明显被破坏、骨密度降低,DRG CCL2 m RNA表达相对对照组增加约3倍(P0.001)。鞘内注射AM_(22-52)能使后足机械痛阈值回升到正常,并抑制骨癌诱发的CCL2 m RNA增加(P0.001)。CCL2在正常大鼠DRG神经元有表达,且多与AM分布在相同细胞上。以上结果提示,AM在骨癌痛的产生中发挥作用;DRG中AM活动增加会上调CCL2的表达,可能是继发性骨癌时AM参与诱发痛觉高敏产生的细胞学机制。  相似文献   

8.
采用新型TAXIScan细胞动态可视化系统观察和分析中性粒细胞在趋化因子甲酰甲硫氨酰–亮氨酰–苯丙氨酰(N-formyl-methionyl-leucyl-phenylalanine,f MLP)诱导下的迁移以及在此过程中胞质内游离钙离子浓度的变化规律。该文将小鼠骨髓中性粒细胞经Fluo-3/AM标记后用流式细胞术检测不同浓度f MLP刺激下瞬时钙离子流的变化。采用TAXIScan系统观测f MLP趋化下细胞的运动及运动过程中胞质内钙离子浓度的变化。流式细胞术结果显示,细胞在0.5、1、5μmol/L f MLP诱导下形成的瞬时钙离子流峰值最高;TAXIScan结果显示,f MLP作用下细胞瞬时钙离子流要早于极性化出现,且在细胞迁移过程中伴随着钙离子浓度的振荡波动,其中1μmol/L f MLP作用下细胞运动速度最快、路程最远。TAXIScan系统可准确、定量地分析中性粒细胞定向迁移过程及单细胞钙离子荧光的变化,为探究中性粒细胞极性与钙离子间的关系提供新方法及参考依据。  相似文献   

9.
急性肺损伤(acute lung injury,ALI)是一种临床常见的肺部感染危重疾病,其核心是过度的炎症反应。新冠病毒导致ALI的发生,临床针对ALI的治疗措施是抑制过度炎症,促进损伤修复。趋化因子CXCL10和CXCR3受体与ALI密切相关,在ALI中CXCL10-CXCR3作用于肺巨噬细胞、中性粒细胞、淋巴细胞等免疫细胞的激活和迁移,从而影响ALI的进展。本文阐述CXCL10-CXCR3通过肺巨噬细胞、中性粒细胞、自然杀伤细胞等多种细胞影响ALI的进展,探讨CXCL10-CXCR3作为抑制炎症反应的靶点,为ALI的治疗提供新的策略。  相似文献   

10.
目的:探讨百草枯(PQ)对活性氧类物质(ROS)和中性粒细胞凋亡的影响及可能机制。方法:离体培养健康成人中性粒细胞,给予不同浓度百草枯刺激后培养6~24 h,流式细胞仪检测中性粒细胞凋亡率及ROS含量,Western blot检测信号蛋白核因子kappa B(NF-кB)、天冬氨酸特异性半胱氨酸蛋白酶3(Caspase 3);给予ROS、NF-κB拮抗剂后,再次检测中性粒细胞凋亡率及信号蛋白含量。结果:PQ可明显促进ROS产生及抑制中性粒细胞凋亡,这种效应可被ROS抑制剂二联苯碘(DPI)及NF-кB抑制剂四氢吡咯二硫代氨基甲酯(PDTC)逆转。同时,PQ能促进NF-κB表达增加,而Caspase 3表达则受到明显抑制。结论:百草枯是强力的ROS诱导剂,并能抑制中性粒细胞凋亡,其机制可能与NF-κB活化,进而抑制Caspase 3表达有关。  相似文献   

11.
卵巢激素对肺泡巨噬细胞趋化活性的影响   总被引:2,自引:2,他引:0  
为探讨卵巢激素对非性器官肺脏的防御功能有无影响,本研究以肺泡巨噬细胞(AM)趋化活性为指标,观察了卵巢激素对成年雄性大鼠离体AM的趋化活性的作用。结果显示:不同浓度的酵母多糖激活血清与AM在体外培养3.5h,对AM趋化性有良好的线性关系。雌二醇能抑制AM的趋化活性,量效关系显著(r=-0.9280,P<0.01);而孕酮则促进AM的趋化活性,亦具有剂量依从性(r=0.9975,P<0.01)。提示:卵巢激素除参与性器官功能的调节外,对于非性器官肺脏的防御功能亦具有一定的调控作用。  相似文献   

12.
Chemotactic factor inactivator (CFI) can decrease the neutrophil chemotactic activity of C5a. Gc-Globulin (GcG) can function as a cochemotaxin for C5a by binding to C5a or C5a des Arg and enhancing its chemotactic potency. We hypothesized that CFI might interact with GcG and thus decrease the chemotactic activity of C5a. CFI was found to markedly inhibit the neutrophil chemotactic activity of partially purified C5a containing GcG (p less than 0.01). Addition of GcG was able to reverse the capacity of CFI to inhibit C5a-directed neutrophil chemotaxis (p less than 0.01). CFI had no significant effect on neutrophil chemotaxis when incubated with C5a depleted of GcG or C5a des Arg. CFI was also able to inhibit the interaction of C5a with GcG adsorbed to plastic. To determine if CFI interacted with GcG, a sandwich ELISA was used. These ELISA tests demonstrated that CFI directly interacted with GcG in a dose-dependent manner that was both heat and pH sensitive. To investigate the possibility of enzymatic degradation of C5a by CFI, CFI preparations were analyzed for carboxypeptidase activity, aminopeptidase activity, and for the capacity to cleave dansylated C5a. No enzymatic activity or cleavage was observed. Furthermore, the direct interaction of CFI with C5a and C5a des Arg was assessed by ELISA tests and column chromatography and no interaction was observed. These results suggest that CFI modulates C5a-directed neutrophil chemotaxis by interacting with GcG and preventing GcG from enhancing the chemotactic potency of C5a.  相似文献   

13.
Two neutrophil chemotactic factors were identified in soluble egg antigen preparations of Schistosoma japonicum. The higher-molecular-weight neutrophil chemotactic factor was not separable from eosinophil chemotactic factor by means of gel filtration, anion-exchange chromatography, isoelectric focusing, or affinity chromatography; this neutrophil chemotactic factor is apparently identical to the higher-molecular-weight eosinophil chemotactic factor which we purified previously from the soluble egg antigen. The chemotactic activity of the eosinophil chemotactic factor for neutrophils was stable to periodate oxidation but was notably affected by heating or Pronase digestion, suggesting that the determinant for neutrophil chemotaxis exists on the peptide moiety of the eosinophil chemotactic factor. The lower-molecular-weight neutrophil chemotactic factor was separable from the higher-molecular-weight eosinophil chemotactic factor by gel filtration or anion-exchange chromatography. This neutrophil chemotactic factor was rather hydrophobic and heat-stable, but was sensitive to Pronase or carboxypeptidase A digestion. These results suggest that the receptors on the surfaces of neutrophils and eosinophils for those chemoattractants would be different from each other. We suppose that neutrophil chemotactic factors and eosinophil chemotactic factors from the eggs are responsible for neutrophil and eosinophil accumulation around the eggs in schistosomiasis japonica.  相似文献   

14.
The macrophage-derived neutrophil chemotactic factor (MNCF) is a D-galactose-binding lectin that induces neutrophil migration in vitro and in vivo. Neutrophil recruitment induced by MNCF is resistant to glucocorticoid treatment and is inhibited by the lectin-specific sugar, D-galactose. In the present study, we characterized the binding of MNCF to neutrophils and the responses triggered by this binding. Exposure to MNCF resulted in cell polarization, formation of a lamellipodium, and deep ruffles on the cell surface. By confocal microscopy, we observed that MNCF was evenly distributed on the cell surface after 30 min of incubation. The labeling intensity progressively diminished with longer incubations. Internalization kinetics showed that MNCF/ligand complexes were rapidly internalized, reaching maximum intracellular concentrations at 120 min and then decreased thereafter. The binding and internalization of MNCF were selectively inhibited by D-galactose. MNCF-induced neutrophil chemotaxis was inhibited by pertussis toxin. This fact strongly suggests that the MNCF-ligand on the neutrophil surface is a G-protein-coupled receptor (GPCR), similar to receptors for well-established neutrophil attractants. Our observations on the ability of MNCF to activate neutrophils are consistent with the increasing evidence for the participation of animal lectins in the innate immune response.  相似文献   

15.
The therapeutic efficacy of the sulfones, dapsone, and sulfoxone in neutrophilic dermatoses may be related to the effects of these drugs on neutrophil function. Therefore we determined whether neutrophil chemotactic migration to various chemoattractants could be inhibited by sulfones in vitro. The chemotactic responses of human neutrophils from healthy donors were tested by using N-formyl-methionyl-leucyl-phenylalanine (F-met-leu-phe), purified human C5a, and leukocyte-derived chemotactic factor (LDCF). Therapeutic concentrations of sulfones selectively inhibited neutrophil chemotaxis to F-met-leu-phe, but did not affect neutrophil chemotaxis to LDCF or C5a. Inhibition of neutrophil chemotaxis to F-met-leu-phe was induced by both dapsone and sulfoxone at a concentration of 10 micrograms/ml without affecting random migration, and the inhibition was reversed by washing the neutrophils. When dapsone- and sulfoxone-treated neutrophils (100 micrograms/ml) were stimulated with F-met-leu-phe, neutrophil superoxide generation was not inhibited. Sulfapyridine (10 micrograms/ml) also selectively inhibited neutrophil chemotaxis to F-met-leu-phe; however, sulfamethoxazole and sulfisoxazole did not affect chemotaxis. The inhibitory effects of dapsone, sulfoxone, and sulfapyridine could not be demonstrated with granulocytes from rabbits or guinea pigs nor with human monocytes. Experiments with radiolabeled dapsone showed rapid, nonspecific, and reversible binding of dapsone to human neutrophils. These data suggest that a mechanism of action of sulfones in neutrophilic dermatoses may be a selective inhibition of neutrophil migration to as yet undefined chemoattractants in the skin.  相似文献   

16.
Macrophages harvested from the peritoneal cavities of rats release a neutrophil chemotactic factor (MNCF) in response to stimulation with Gram-negative bacterial lipopolysaccharide (LPS). MNCF has been shown to be active in rats treated with dexamethasone, a glucocorticoid that usually inhibits the neutrophil migration induced in this species by interleukin (IL)-1, tumour necrosis factor alpha (TNFalpha), IL-8, C5a and leukotriene B(4) (LTB(4)). Here we report that macrophages harvested from peritoneal cavities of mice, and stimulated in vitro with LPS, also release a factor that induces neutrophil migration in dexamethasone-treated animals. This chemotactic activity was neutralized by the incubation of the LPS-stimulated macrophage supernatants with a purified polyclonal IgG anti-mouse TNFalpha. In addition, significant amounts of TNF were detected in the supernatants. The neutrophil migration induced by intraperitoneal administration of recombinant murine TNFalpha was also unaffected by pretreatment of the mice with dexamethasone. Moreover, neutrophil migration induced by intraperitoneal injection of LPS was completely blocked by pretreatment of the mice with a monoclonal antibody against murine TNFalpha. In conclusion, our results support the hypothesis that, in contrast to the role of TNF in rats (where it indirectly induces neutrophil migration), in mice, it may be an important mediator in the recruitment of neutrophils to inflammatory sites.  相似文献   

17.
Large numbers of eosinophils and neutrophils attracted to the soluble extract of Schistosoma japonicum adult worms (SjAW-ext) were detected at the injection site of normal guinea pig skin. Eosinophil and neutrophil chemotactic activities were also confirmed in in vitro assay by using blind-well chambers with Millipore filters in dose-dependent fashion. Two components of SjAW-ext showed eosinophil chemotactic activity; one was in the high molecular weight fraction (JAE-H), estimated to be more than 440,000 daltons, the other in the low molecular weight fraction (JAE-L) obtained by Sephadex G-200 gel filtration. High neutrophil chemotactic activity was detected in the JAE-L. These eosinophil and neutrophil chemotactic activities were also detected in culture fluid of S. japonicum adult worms. Eosinophil chemotactic factor (ECF) of JAE-H was stable to heating (100 C, 30 min) and pronase digestion, but completely destroyed by periodate oxidation. It is suggested that the ECF of JAE-H is a glycoprotein. JAE-L was also stable to heating (56 and 100 C, 30 min) and pronase digestion for eosinophil chemotaxis. Possible roles of those activities in schistosome infections are discussed.  相似文献   

18.
经调理酵母多糖(OPZ)刺激的大鼠肺泡巨噬细胞培养上清液可松弛豚鼠离体气管肌条,上清液中PGE_1增加,表明PGE_1是肺泡巨噬细胞松弛气管肌条的介质之一。经OPZ激活的肺泡巨噬细胞培养上清液与豚鼠血小板作用后,其松弛效应被逆转为收缩效应,提示可能由于肺泡巨噬细胞分泌血小板活化因子激活血小板,使释放收缩介质所致。肺泡巨噬细胞借助所分泌的介质经常性地调节气道阻力,对肺通气具有保护意义。  相似文献   

19.
Agents known to affect intracellular levels of cyclic AMP in many diverse systems have been tested for their effect on the chemotaxis induced by Escherichia coli culture filtrates, spontaneous motility and cyclic AMP levels of rabbit peritoneal neutrophils. Prostaglandin E1 and A1 but not prostaglandin F2alpha increased neutrophil cyclic AMP levels and, correspondingly, only the former two prostaglandins inhibited chemotaxis. Nevertheless, a quantitative relationship between prostaglandin stimulation of cyclic AMP and inhibition of chemotaxis could not be found. Epinephrine, isoproterenol, and, to a much lesser extent, norepinephrine increased neutrophil cyclic AMP through beta adrenergic stimulation. Only epinephrine and isoproterenol inhibited chemotaxis, but the inhibition was variable and not related to the ability of these catecholamines to increase intracellular cyclic AMP. Cholera toxin increased neutrophil cyclic AMP after a 30-min lag period which paralled its inhibitory effect on chemotaxis and spontaneous motility. However, the effect on chemotaxis require 50 ng/ml of toxin whereas the effect on cyclic AMP was manifested at 2 ng/ml of toxin. Prior to 30-min preincubation there was no effect of even 1250 ng/ml of toxin on either cyclic AMP or chemotaxis. Choleragenoid prevented the effects of toxin on both cyclic AMP and chemotaxis. The bacterial chemotactic factor obtained from E. coli culture filtrates did not effect a measurable change in levels of neutrophil cyclic AMP. The data indicate that even though cyclic AMP is not, in the main sequence of events, triggering the chemotactic response, increases in neutrophil cyclic AMP may modulate the movement and thus the chemotactic responsiveness of the neutrophil.  相似文献   

20.
Neutrophil infiltration is the first step in eradication of bacterial infection, but neutrophils rapidly die after killing bacteria. Subsequent accumulation of macrophage lineage cells, such as alveolar macrophages (AMs), is essential to remove dying neutrophils, which are a source of injurious substances. Macrophage lineage cells can promote tissue repair, by producing potential growth factors including hepatocyte growth factor (HGF). However, it remains elusive which factor activates macrophage in these processes. Intratracheal instillation of Pseudomonas aeruginosa caused neutrophil infiltration in the airspace; subsequently, the numbers of total AMs and neutrophil ingested AMs were increased. Bronchoalveolar lavage (BAL) fluid levels of monocyte chemoattractant protein (MCP)-1/CC chemokine ligand-2 (CCL2), a potent macrophage-activating factor, were increased before the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid. Immunoreactive MCP-1 proteins were detected in alveolar type II epithelial cells and AMs only after P. aeruginosa infection. The administration of anti-MCP-1/CCL2 Abs reduced the increases in the number of AM-ingesting neutrophils and HGF levels in BAL fluid, and eventually aggravated lung tissue injury. In contrast, the administration of MCP-1/CCL2 enhanced the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid, and eventually attenuated lung tissue injury. Furthermore, MCP-1/CCL2 enhanced the ingestion of apoptotic neutrophils and HGF production by a mouse macrophage cell line, RAW 267.4, in a dose-dependent manner. Collectively, MCP-1/CCL2 has a crucial role in the resolution and repair processes of acute bacterial pneumonia by enhancing the removal of dying neutrophils and HGF production by AMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号