首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
目的:探讨在模拟不同海拔高度时,拟赴高原的参训官兵在急进高原时高原反应发生的特点,为高原参训官兵高原病的预防提供理论依据。方法:应用西北特殊环境人工实验舱模拟不同海拔高度,随机对516名平原部队参训官兵进行急进不同海拔高原反应进行测试,动态观察平原环境、急进高原2000 m、3000 m、4500 m海拔高度的自觉症状及部分生理指标(心率、血氧饱和度)的动态变化以及进舱前和出舱后血压值变化情况。结果:(1)516名官兵均完成测试,在海拔2000 m时,53例出现耳闷、耳涨症状,94例出现耳鸣症状,作吞咽动作后在以后的"上升"和"下降"过程中均未出现症状;在海拔4500 m时,39例出现高原反应,其中19例出现头晕症状,20例出现手足麻木,高原反应发生率7.56%。(2)随着海拔高度逐渐升高,受试者心率逐渐加快,从2000 m开始加快明显(p0.05),血氧饱和度逐渐降低,到3000 m开始血氧饱和度下降明显(p0.05)。(3)进舱前和出舱后血压值相比没有统计学差异(p0.05)。结论:参训官兵急进高原后,高原反应主要出现在4500 m海拔高度,高原反应发生率7.56%;高原环境对机体的心率、血氧饱和度的影响随着海拔高度增加而明显,2000 m开始心率明显加快,3000 m开始出现血氧饱和度明显下降,耳部不适症状主要出现在2000 m,但在做吞咽动作后消失。  相似文献   

2.
目的:对直接影响神经支架微观结构的关键因素进行分析,以确定制备不同孔径仿真支架的制备工艺。方法:用前期开发的神经支架制备工艺,应用不同浓度的醋酸浓度和冷淋速度制备仿真神经支架,以扫描电镜观察神经支架结构特征,以确定醋酸浓度和冷淋速度对神经支架内部结构的影响。结果:醋酸浓度和冷淋速度对神经支架内部结构具有重要影响。醋酸浓度为0mg/ml时,无法制备定向结构的神经支架,当醋酸浓度为1mg/ml、2mg/ml、3mg/ml和4mg/ml时,可制备轴定向仿真支架,并且神经支架的孔径随醋酸浓度增大而增大;当冷淋速度为1×10-5m/s、2×10-5m/s和5×10-5m/s时,所制备的仿真支架内部均呈明显的轴向微管结构,其中冷淋速度为2×10-5m/s时,其轴向微管结构排列最为有序、规律。当速度为1×10-6m/s,2×10-6m/s,5×10-6m/s以及1×10-4m/s时,所制备的材料内部微管结构走向无明显规律。结论:醋酸浓度和冷淋速度是影响神经支架内部结构的两个关键因素,通过改变醋酸浓度和冷淋速度可制备不同孔径的仿真神经支架。  相似文献   

3.
目的:对直接影响神经支架微观结构的关键因素进行分析,以确定制备不同孔径仿真支架的制备工艺。方法:用前期开发的神经支架制备工艺,应用不同浓度的醋酸浓度和冷淋速度制备仿真神经支架,以扫描电镜观察神经支架结构特征,以确定醋酸浓度和冷淋速度对神经支架内部结构的影响。结果:醋酸浓度和冷淋速度对神经支架内部结构具有重要影响。醋酸浓度为0mg/ml时,无法制备定向结构的神经支架,当醋酸浓度为1mg/ml、2mg/ml、3mg/ml和4mg/ml时,可制备轴定向仿真支架,并且神经支架的孔径随醋酸浓度增大而增大;当冷淋速度为1×10-5m/s、2×10-5m/s和5×10-5m/s时,所制备的仿真支架内部均呈明显的轴向微管结构,其中冷淋速度为2×10-5m/s时,其轴向微管结构排列最为有序、规律。当速度为1×10-6m/s,2×10-6m/s,5×10-6m/s以及1×10-4m/s时,所制备的材料内部微管结构走向无明显规律。结论:醋酸浓度和冷淋速度是影响神经支架内部结构的两个关键因素,通过改变醋酸浓度和冷淋速度可制备不同孔径的仿真神经支架。  相似文献   

4.
高原人体左心室舒张功能和顺应性的改变   总被引:1,自引:0,他引:1  
应用同步描记心电图、心音图、颈动脉搏动图和心尖搏动图以测定高原人体的左心室舒张功能和顺应性。在4个不同海拔高度进行实验,即76m(海平对照)、2161m、3270m和4179m,每一高度40名健康男性青年,高原3组世居、移居各20名。结果显示:随着海拔增高,主动舒张时间指数(TRTI)有减小趋势,RF波相对振幅(F/H)逐渐降低,A波相对振幅(A/D)则渐趋增大,3270m以上增大明显(p<0.05),舒张振幅时间指数(DATI)逐渐降低,3270m以上差异极显著(p<0.001)。高原世居与移居者相比,在海拔4179m出现明显差别,移居组TRTI、DATI、F/H较低而A/D较高(D<0.05)。测定射血前期与左室射血时间比值(PEP/LVET)、射血分数(EF)及左室周径纤维平均缩短速度(mVcf)3项指标作对照,显示在此高度左室收缩功能仍能保持。高原慢性心肌缺氧可能是导致左室舒张功能和顺应性轻度降低的原因。  相似文献   

5.
风沙流持续吹袭对樟子松幼树光合蒸腾作用的影响   总被引:4,自引:0,他引:4  
赵哈林  李瑾  周瑞莲  曲浩  云建英  潘成臣 《生态学报》2015,35(20):6678-6685
为了解风沙流持续吹袭对樟子松幼树光合蒸腾特征影响,2013年春季在内蒙古科尔沁沙地研究了0(CK)、6、9、12、15、18m/s等6个梯度风速处理30min持续风沙流吹袭下樟子松幼树光合蒸腾速率和水分利用效率等指标的变化规律。结果表明:随着风沙流吹袭强度的增加,光合速率、气孔导度和水分利用效率的日变化规律发生了明显改变,而蒸腾速率和胞间CO2浓度日变化曲线没有显著变化。和CK相比,6m/s和12m/s风沙流吹袭下其日均光合速率分别提高13.8%和38.9%,18m/s风沙流吹袭下则下降18.9%;6m/s和15m/s风沙流吹袭下其日均蒸腾速率分别提高16.9%和53.0%,18m/s风沙流吹袭下其日均蒸腾速率降低18.54%。和CK相比,其日均胞间CO2浓度在6—12m/s风沙流吹袭下没有显著变化,15m/s和18m/s风沙流吹袭下则分别提高16.2%和3.3%。6m/s和15m/s风沙流吹袭使其日均气孔导度较CK分别增加26.6%和45.2%,18m/s风沙流吹袭则使其降低13.7%。6、9、12、18m/s风沙流吹袭使其日均水分利用效率分别较CK增加7.3%、1.9%、18.2%和3.1%,而15m/s风沙流吹袭下其水分利用效率下降13.5%。  相似文献   

6.
赵哈林  李瑾  周瑞莲  云建英  冯静  苏娜 《生态学报》2017,37(5):1431-1437
为了解不同强度净风频繁吹袭对樟子松幼苗光合蒸腾特性的影响,2013年春季在内蒙古科尔沁沙地研究了0(对照)、6、9、12、15、18 m/s等6个风速处理(分别相当于0、4、5、6、7、8级风)4次吹袭下樟子松幼苗光合速率、蒸腾速率、水分利用效率等指标的变化。结果表明,净风频繁吹袭没有改变樟子松幼苗的光合速率和蒸腾速率的日变化规律,但可使其光合蒸腾的"午休"时间加长、"休眠"程度加深;随着风吹强度的增加,其日均光合能力和蒸腾速率显著降低,其中18 m/s处理较对照分别下降27.6%和22.3%;随着风吹强度增加,气孔导度、胞间CO_2浓度均先下降后回升,除18 m/s处理胞间CO_2浓度显著高于CK外,其他处理均显著低于CK;随着风吹强度增加,水分利用效率和光能利用效率均先增加后下降,其中除18 m/s处理的水分利用效率显著低于CK,6 m/s处理的光能利用效率高于CK外,其他处理的水分利用效率均高于CK,光能利用效率均低于CK;日均光合蒸腾速率的下降主要源于气孔导度的降低,而水分利用效率和光能利用效率的变化均受制于光合速率和蒸腾速率的变化。  相似文献   

7.
高原青少年最大有氧能力的研究   总被引:2,自引:0,他引:2  
采用自行车递增负荷运动试验,对青海西宁地区(海拔2260m)86名13~16岁男女中学生的最大摄氧量,无氧阈以及血氧饱和度等指标进行了测定。结果表明,高原青少年的最大摄氧量较低,而无氧阈则较高。血氧饱和度随负荷增加逐渐降低,在接近极限负荷时迅速下降,提示高原低氧是限制最大运动能力的主要因素。无氧阈较高说明高原青少年组织细胞利用氧的能力提高,这是对高原低氧环境长期适应的结果。  相似文献   

8.
高原鼠兔低氧适应分子机制的研究进展   总被引:4,自引:0,他引:4  
Ma L  Ge RL 《生理科学进展》2007,38(2):143-146
高原鼠兔(Ochotona curzoniae)是生活在青藏高原海拔3000-5000m地区的特有物种,具有极强的低温、低氧耐受能力。近十几年来,许多国内外学者从整体水平及分子水平对高原鼠兔的低氧适应机制进行了大量研究,认为该动物是研究低氧适应的理想动物模型。本文对高原鼠兔的低氧适应机制从血液学特征、肺血管的结构和功能及分子生物学研究等方面作一系统阐述,旨在阐明高原土生动物在高寒缺氧环境中生存的适应机制,这对人类适应高原及高原疾病的防治有着重要的指导意义。  相似文献   

9.
不同海拔高原适应相关肝脏功能与脂代谢变化   总被引:1,自引:0,他引:1  
目的:分析高原移居者肝脏功能及血脂水平。方法:选择不同海拔高原移居者(平均10年以上)男性80名,无高血压及糖尿病病史。按高原会议订立标准分组:低海拔组(〈1500米)8例,中海拔组(1500-2500米)9例,高海拔组(2500-4500米)36例,特高海拔及以上组(〉4500米)9例,运输组(2700-4600米)18例。清晨抽取空腹静脉血5mL,Roche Modular PE全自动生化免疫分析仪检测肝脏功能及血脂水平。结果:高海拔移居者,总胆红素和直接胆红素升高,总胆固醇、低密度脂蛋白降低;特高海拔及以上移居者(〉4500米),直接胆红素升高,总胆固醇、低密度脂蛋白、载脂蛋白B降低。结论:本文研究结果提示了,高原缺氧环境下,肝脏自身功能抗缺氧发生改变或高原饮食受限可引起肝脏功能变化,进而影响脂类代谢,是机体对长期乏氧状态的适应性改变。  相似文献   

10.
高原鼢鼠和高原鼠兔红细胞低氧适应特征   总被引:1,自引:0,他引:1  
为探讨高原鼢鼠对低氧高二氧化碳洞道生境及高原鼠兔对高海拔低氧生境的适应机制,用Sysmex SF-3000血细胞分析仪及聚丙烯酰胺凝胶电泳对两种高原动物的血常规及血红蛋白类型进行分析,后者采用聚丙烯酰胺凝胶电泳法。结果表明,高原鼢鼠和高原鼠兔的红细胞数(RBC)、红细胞压积(HCT)及平均红细胞容积(MCV)组间无显著差异(P>0.05),但高原鼢鼠和高原鼠兔的红细胞数显著高于SD大鼠,红细胞压积及平均红细胞容积均显著低于SD大鼠(P<0.05);高原鼢鼠的血红蛋白浓度(HBC)与SD大鼠无显著差异(P>0.05),但显著高于高原鼠兔的HBC(P<0.05)。高原鼢鼠血红蛋白主要有2种类型,高原鼠兔血红蛋白主要有3种类型,而SD大鼠血红蛋白主要有5种类型。从血红蛋白电泳迁移来看,2种高原动物血红蛋白类型有明显的趋同特征并与SD大鼠具有明显的差异。上述结果提示,长期适应高海拔低氧环境的高原动物的红细胞和血红蛋白表现出趋同进化,同时因生境和习性的差异又表现出各自的特异性。  相似文献   

11.
Arterial oxygen saturation (SaO(2)) was measured at 3,600-3,850 m by pulse oximetry at rest and during submaximal exercise in three study groups: 1) highland Aymara natives of the Bolivian altiplano (n = 25); 2) lowland European/North American sojourners to the highlands with at least 2 months of acclimatization time to 3,600 m (n = 27); and 3) subjects of European ancestry born and raised at 3,600 m (n = 22). Aymara subjects maintained approximately 1 percentage point higher SaO(2) during submaximal work up to 70% of their maximal work capacity, and showed a smaller rate of decline in SaO(2) with increasing work compared to both European study groups. The higher-exercise SaO(2) of Aymara compared to Europeans born and raised at 3,600 m suggests genetic adaptation. The two European study groups, who differed by exposure to high altitude during their growth and development period, did not show any significant difference in either resting or exercise SaO(2). This suggests that the developmental mode of adaptation is less important than the genetic mode of adaptation in determining exercise SaO(2). A weak correlation was detected (across study groups only) between the residual forced vital capacity (FVC) and the residual SaO(2) measured at the highest level of submaximal work output (P = 0.024, R = 0.26). While firm conclusions based on this correlation are problematic, it is suggested that a part of the higher SaO(2) observed in Aymara natives is due to a larger lung volume and pulmonary diffusion capacity for oxygen. Results from this study are compared to similar studies conducted with Tibetan natives, and are interpreted in light of recent quantitative genetic analyses conducted in both the Andes and Himalayas.  相似文献   

12.
为了探讨急性低氧时藏系绵羊(Ovis aries)的血气特点,揭示其低氧适应机制,将7只雄性藏系绵羊和5只雄性移居绵羊分别置于高低压氧舱内,测定模拟海拔0、2 300和4 500 m时各动物清醒状态下的血气指标。用热稀释法测定心输出量。使用血气分析仪和EG7血样板,测定动脉及混合静脉血的血气指标,按Ficks方法计算氧耗量。结果显示,随着模拟海拔高度的升高,藏羊和移居羊的动静脉血氧饱和度(So2)、氧分压(Po2)、二氧化碳分压(Pco2)都呈明显下降趋势(P<0.05),血红蛋白浓度(Hb)、血液pH、心输出量及氧耗量虽无明显的差异性改变,但它们在4 500 m处的绝对值是增加的。在相同海拔,藏羊的Hb明显低于移居羊(P<0.05),4 500 m时藏羊的动脉血氧饱和度(Sao2)及组织摄氧量显著高于移居羊(P<0.05)。表明藏羊在急性低氧时表现出的高Sao2及高组织摄氧量,低Hb、低pH是它适应高原低氧的生理基础。  相似文献   

13.
The spleen and thymus have been studied macro- and microscopically in rats (180-200 g body mass) on the 1st, 3d, 5th, 7th, 14th and 28th days of adaptation to a decreased atmospheric pressure in the altitude chamber corresponding to lifting to 5,000 and 7,500 m (after a preliminary gradual acclimatization) and on the 14th, 28th, 42d, 56th days of readaptation. A relative mass of the organs, the white pulp section area--the transversal section area of the spleen ratio, the summation section area of its lymph nodules have been estimated. In the thymus the cortico-medullary index (CMI) has been defined. A relative mass of the spleen increases during the first week of hypoxia, and during adaptation period it somewhat decreases and stabilizes, remaining higher than in the control. At the altitude of 5,000 m the cross section area of the lymph nodules decreases by 17% on the 28th adaptation day and at the altitude of 7,500 m--by 27% beginning from the 14th up to the 28th adaptation days. In the thymus the CMI, after some decrease during the first days of hypoxia at the altitude of 5,000 m, increases and normalizes on the 28th adaptation day, and at the altitude of 7,500 m stabilizes on the 14th - 28th days of hypoxia. When the rats are at the altitudes of 5,000 and 7,500 m the thymus lymphoid tissue reacts more quickly to the hypoxia effect and much sooner normalizes during the readaptation period than does the white pulp of the spleen. The main changes in the lymphoid tissue of the spleen and thymus take place on the 7th - 28th days of hypoxia.  相似文献   

14.
Differences between the effects of training at sea level and at simulated altitude on performance and muscle structural and biochemical properties were investigated in 8 competitive cyclists who trained for 3-4 weeks, 4-5 sessions/week, each session consisting of cycling for 60-90 min continuously and 45-60 min intermittently. Four subjects, the altitude group (AG), trained in a hypobaric chamber (574 torr = 2300 m above sea level), and the other four at sea level (SLG). Before and after training work capacity was tested both at simulated altitude (574 torr) and at sea level, by an incremental cycle ergometer test until exhaustion. Work capacity was expressed as total amount of work performed. Venous blood samples were taken during the tests. Leg muscle biopsies were taken at rest before and after the training period. AG exhibited an increase of 33% in both sea level and altitude performance, while SLG increased 22% at sea level and 14% at altitude. Blood lactate concentration at a given submaximal load at altitude was significantly more reduced by training in AG than SLG. Muscle phosphofructokinase (PFK) activity decreased with training in AG but increased in SLG. All AG subjects showed increases in capillary density. In conclusion, work capacity at altitude was increased more by training at altitude than at sea level. Work capacity at sea level was at least as much improved by altitude as by sea level training. The improved work capacity by training at altitude was paralleled by decreased exercise blood lactate concentration, increased capillarization and decreased glycolytic capacity in leg muscle.  相似文献   

15.
Different hematologic responses to hypoxia in Sherpas and Quechua Indians   总被引:1,自引:0,他引:1  
Previous studies of the erythropoietic response to hypoxia in high-altitude natives suggest that the hematocrit and hemoglobin values in Himalayan natives (Sherpas) are lower than expected for the altitude, perhaps because of a genetic adaptation. However, differences in sampling techniques and experimental methods make comparisons difficult. Our studies were carried out to compare the erythropoietic response with the same altitude in age-matched natives of the Himalayas and Andes by the same experimental techniques. Healthy male subjects were selected in Ollagüe, Chile (n = 29, 27.3 +/- 5.9 yr) and in Khunde, Nepal (n = 30, 24.7 +/- 3.8 yr). Both of these villages are located at 3,700 m above sea level. Hematologic measurements confirmed lower hematocrit values in Nepal (48.4 +/- 4.5%) than in Chile (52.2 +/- 4.6%) (P less than 0.003). When subjects were matched for hematocrit, erythropoietin concentrations in Chile were higher than in Nepal (P less than 0.01). Detailed measurements of blood O2 affinity in Nepal showed no differences in shape or position of the O2 equilibrium curve between Sherpas and Western sojourners. Our results indicate that although Quechua Indians have higher hematocrits than Sherpas living at the same altitude, nevertheless they may be functionally anemic.  相似文献   

16.
ABSTRACT: BACKGROUND: Acute mountain sickness is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. METHODS: Oxygen-increased respirator (OIR) has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m Group 3,4,5: 4000 m, 4700 m, 5380 m) with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2), malondialdehyde (MDA), superoxide dismutase (SOD), blood lactate (BLA) and PWC (physical work capacity) -170. RESULTS: The results showed that higher SpO2, lower heart rate (except during exercise) and better recovery of heart rate were observed from all the subjects 'with OIR' compared with 'without OIR' (P < 0.05). Moreover, compared with 'without OIR', subjects 'with OIR' in Group 1 had lower concentrations of MDA and BLA, and a higher concentration of SOD (P < 0.05), while subjects 'with OIR' in Group 2 showed better physical capacity (measured by the PWC-170) (P < 0.05). The additonal experiment conducted in a hypobaric chamber (simulating 4,000 m) showed that the partial pressure of oxygen in blood and arterial oxygen saturation were higher 'with OIR' than 'without OIR' (P < 0.05). CONCLUSIONS: We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.  相似文献   

17.
We measured common carotid blood flow using a range gated Doppler velocimeter, and internal and external blood velocities using a continuous Doppler in 20 lowlanders at sea level, under normal barometric pressure, in 10 subjects in an altitude chamber under a barometric pressure of 462 Torr (61.6 KPa) and then in 5 of them over a 3-weeks period at 3850 m of elevation (475 Torr = 63.3 KPa). The same measurements were also performed in 20 permanent residents at 3850 m. Common carotid blood flow was 15% higher in all subjects exposed to high altitude, due to a lowering in downstream resistances since systemic blood pressure did not change at high altitude. The increase in common carotid blood flow was the result of an immediate increase in internal carotid blood velocities observed in the altitude chamber as well as after the arrival at high altitude, but a few days later those velocities in the internal carotid artery declined to values similar to those observed at sea level. In the same time velocities in external carotid artery rose at high altitude, remained steadily elevated and the result is a permanent increase in common carotid blood flow at altitude. In all subjects we performed the same measurements, during an acute inhalation of gas mixtures to try to quantify the mechanisms controlling the changes in common carotid blood flow while changing gas inhalation. In the limits of the variations in PO2 (60 to 400 Torr) and in PCO2 (30 to 50 Torr) the stimulation by CO2 is twice more efficient than the O2 stimulation on vasomotion.  相似文献   

18.
To understand the morphological and physiological variations among the temporary and permanent residents of high altitude, this study was undertaken at Leh, Ladakh. It is situated at 3500 m (11500 feet) above sea level, the mean barometric pressure was 500 tors and air temperature varied from 2 degrees C to 20 degrees C. The highland Tibetans showed broadest chest and most developed musculature closely followed by Ladakhi Bods. These high altude natives also displayed significantly higher value of vital capacity, forced vital capacity, and inspiratory capacity. The better respiratory efficiency observed among high altitude residents indicates higher degree of adaptation to high altitude hypoxia. Temporary residents were observed to be tallest and fattest with lower trunk fat predominance of all the four groups and showed narrowest chest and lower respiratory efficiency as compared to high altitude natives. The duration of stay at high altitude has clearly brought about a perceptible difference in body dimensions and respiratory functions of various groups of adult males studied at same altitude.  相似文献   

19.
Nocturnal periodic breathing at altitudes of 6,300 and 8,050 m   总被引:2,自引:0,他引:2  
Nocturnal periodic breathing was studied in eight well-acclimatized subjects living at an altitude of 6,300 m [barometric pressure (PB) 350-352 Torr] for 3-5 wk and in four subjects during one night at 8,050 m altitude (PB 281-285 Torr). The measurements at 6,300 m included tidal volume by inductance plethysmography, arterial O2 saturation by ear oximetry (calibrated by arterial blood samples), electrocardiogram (ECG), and electrooculogram. At 8,050 m, periodic breathing was inferred from the cyclical variation in heart rate obtained from a night-long ECG record. All subjects at 6,300 m altitude showed well-marked periodic breathing with apneic periods. Cycle length averaged 20.5 s with 7.9 s apnea. Minimal arterial O2 saturation averaged 63.4% corresponding to a PO2 of approximately 33 Torr, i.e., approximately 6 Torr lower than the normal value at rest during daytime. This was probably the most severe hypoxemia of the 24-h period. At 8,050 m altitude, the cycle length averaged 15.4 s, much longer than predicted by a theoretical model. Cyclical variations in heart rate caused by periodic breathing occurred in all subjects, but abnormal cardiac rhythms such as ventricular premature contractions were uncommon. The severe arterial hypoxemia caused by periodic breathing may be an important determinant of tolerance to these great altitudes.  相似文献   

20.
Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500–4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号