首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-affinity Ca2(+)-ATPase activity in the optic tectum of the brain of cichlid fish was cytochemically localized using cerium ions to precipitate phosphate. Activation of the enzyme with micromolar instead of millimolar calcium concentrations (i.e., physiological cytoplasmic instead of extracellular concentrations) resulted in intracellular localization of reaction product attached to the cytoplasmic side of plasma membranes and to synaptic vesicles. The plasmalemmal enzyme activity was concentrated in synaptic regions. Synaptic vesicles in some terminals exhibited high amounts of ATPase activity, whereas others were free of reaction product. By use of electron energy-loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) techniques, even small amounts of cerium-containing precipitates could be analyzed and precisely localized. The cytochemical observations are in good agreement with biochemical findings and therefore indicate that the calcium pump of neuronal plasma membranes can be successfully localized.  相似文献   

2.
In certain brain regions, extracellular zinc concentrations can rise precipitously as intense neuronal activity releases large amounts of zinc from the nerve terminals. Although zinc release has been suggested to play a pathological role, its precise physiological effect is poorly understood. Here, we report that exposure to micromolar quantities of zinc for only a few minutes robustly and specifically activated tropomyosin-related kinase (Trk) receptors, most likely TrkB, in cultured cortical neurons. We further found that Trk activation by zinc is extracellularly mediated by activation of metalloproteinases, which release pro-BDNF from cells and convert pro-BDNF to mature BDNF. These results suggest that activity-dependent release of extracellular zinc leads to metalloproteinase activation, which plays a critically important role in Trk receptor activation at zinc-containing synapses.  相似文献   

3.
Much current work on the mechanism of neurosecretion has focused on proteins specific to neural secretory vesicles (synaptic vesicles). We report a calcium-stimulated lipid kinase that co-purifies with rat brain synaptic vesicles. This enzyme activity is found only in membrane fractions that contain synaptic vesicle markers. Based on identification of the lipid product as ceramide 1-phosphate and on the finding that ceramide kinase activity co-purifies with synaptic vesicles, the enzyme is proposed to be a ceramide kinase. Kinase activity is stimulated by micromolar concentrations of calcium. Calcium increases the apparent Vmax of the reaction with little effect on the Km for ceramide. The vesicular localization of this enzyme, the requirement for ATP, and the stimulation of enzyme activity by micromolar calcium suggest that ceramide phosphorylation may be associated with neurotransmitter release.  相似文献   

4.
Acid-sensing ion channels (ASICs) are excitatory receptors for extracellular H(+). Proposed functions include synaptic transmission, peripheral perception of pain, and mechanosensation. Despite the physiological importance of these functions, the precise role of ASICs has not yet been established. In order to increase our understanding of the physiological role and basic structure-function relationships of ASICs, we report here the cloning of six new ASICs from the zebrafish (zASICs). zASICs possess the basic functional properties of mammalian ASICs: activation by extracellular H(+), Na(+) selectivity, and block by micromolar concentrations of amiloride. The zasic genes are broadly expressed in the central nervous system, whereas expression in the peripheral nervous system is scarce. This pattern suggests a predominant role for zASICs in neuronal communication. Our results suggest a conserved function for receptors of extracellular H(+) in the central nervous system of vertebrates.  相似文献   

5.
Tapia  Ricardo  Peña  Fernando  Arias  Clorinda 《Neurochemical research》1999,24(11):1423-1430
Protein phosphorylation and dephosphorylation reactions, catalyzed by kinases and phosphatases, are involved in the regulation of a wide variety of physiological processes. In the nervous system, such reactions seem to modulate the function of several proteins crucial in synaptic transmission, including voltage-gated and ligand-gated channels, neurotransmitter release, and neurotransmitter transporters. On the other hand, hyperphosphorylation of certain cytoskeletal proteins or receptors may lead to neuronal death. In the present work we review the neurotoxic effect of okadaic acid (OKA), a potent and specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, as well as its action on synaptic function. We analyze recent findings demonstrating that the microinjection of OKA in rat hippocampus induces neuronal stress, hyperexcitation and neurodegeneration, and discuss their possible relationships to alterations of protein phosphorylation-dephosphorylation observed in Alzheimer's disease brain. These results suggest that protein hyperphosphorylation due to inhibition of phosphatases in vivo induces neuronal stress and subsequent neurodegeneration.  相似文献   

6.
BackgroundHumanin (HN) is an endogenous 24-residue peptide that was first identified as a protective factor against neuronal death in Alzheimer's disease (AD). We previously demonstrated that the highly potent HN derivative HNG (HN with substitution of Gly for Ser14) ameliorated cognitive impairment in AD mouse models. Despite the accumulating evidence on the antagonizing effects of HN against cognitive deficits, the mechanisms behind these effects remain to be elucidated.MethodsThe extracellular fluid in the hippocampus of wild-type young mice was collected by microdialysis and the amounts of neurotransmitters were measured. The kinetic analysis of exocytosis was performed by amperometry using neuroendocrine cells.ResultsThe hippocampal acetylcholine (ACh) levels were increased by intraperitoneal injection of HNG. HNG did not affect the physical activities of the mice but modestly improved their object memory. In a neuronal cell model, rat pheochromocytoma PC12 cells, HNG enhanced ACh-induced dopamine release. HNG increased ACh-induced secretory events and vesicular quantal size in primary neuroendocrine cells.ConclusionsThese findings suggest that HN directly enhances regulated exocytosis in neurons, which can contribute to the improvement of cognitive functions.General significanceThe regulator of exocytosis is a novel physiological role of HN, which provides a molecular clue for HN's effects on brain functions under health and disease.  相似文献   

7.
Reelin is a serine protease of the extracellular matrix.   总被引:9,自引:0,他引:9  
Reelin is an extracellular matrix protein that plays a pivotal role in development of the central nervous system. Reelin is also expressed in the adult brain, notably in the cerebral cortex, where it might play a role in synaptic plasticity. The mechanism of action of reelin at the molecular level has been the subject of several hypotheses. Here we show that reelin is a serine protease and that proteolytic activity is relevant to its function, since (i) Reelin expression in HEK 293T cells impairs their ability to adhere to fibronectin-coated surfaces, and adhesion to fibronectin is restored by micromolar concentrations of diisopropyl phosphorofluoridate, a serine hydrolase inhibitor; (ii) purified Reelin binds FP-Peg-biotin, a trap probe which irreversibly binds to serine residues located in active catalytic sites of serine hydrolases; (iii) purified Reelin rapidly degrades fibronectin and laminin, while collagen IV is degraded at a much slower rate; fibronectin degradation is inhibited by inhibitors of serine proteases, and by monoclonal antibody CR-50, an antibody known to block the function of Reelin both in vitro and in vivo. The proteolytic activity of Reelin on adhesion molecules of the extracellular matrix and/or receptors on neurons may explain how Reelin regulates neuronal migration and synaptic plasticity.  相似文献   

8.
Antipsychotic drugs are effective for the treatment of schizophrenia. However, the functional consequences and subcellular sites of their accumulation in nervous tissue have remained elusive. Here, we investigated the role of the weak-base antipsychotics haloperidol, chlorpromazine, clozapine, and risperidone in synaptic vesicle recycling. Using multiple live-cell microscopic approaches and electron microscopy of rat hippocampal neurons as well as in vivo microdialysis experiments in chronically treated rats, we demonstrate the accumulation of the antipsychotic drugs in synaptic vesicles and their release upon neuronal activity, leading to a significant increase in extracellular drug concentrations. The secreted drugs exerted an autoinhibitory effect on vesicular exocytosis, which was promoted by the inhibition of voltage-gated sodium channels and depended on the stimulation intensity. Taken together, these results indicate that accumulated antipsychotic drugs recycle with synaptic vesicles and have a use-dependent, autoinhibitory effect on synaptic transmission.  相似文献   

9.
The high-affinity cannabinoid site in rat brain is an integral component of brain membranes that recognizes cannabinoids with inhibitory constants (Ki) in the nanomolar range. To clarify its physiological role, we studied the regulation of [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) binding. The site is inhibited by heavy metal ions, such as La3+, at low micromolar concentrations; divalent cations, such as Ca2+ and Mg2+, inhibit [3H]TMA binding, though at somewhat higher concentrations. In contrast, [3H]TMA binding is stimulated by Fe2+, Cu2+, and Hg2+ ions. Ascorbic acid and its analogs are also stimulators of cannabinoid binding at low micromolar concentrations. Stimulation of [3H]TMA binding by ascorbate or ions is dependent upon molecular oxygen, but is not inhibited by metabolic poisons. Metabolically stable nucleoside triphosphate analogs enhance [3H]TMA binding by different mechanisms, with hydrolysis of a high-energy phosphate bond apparently requisite for these influences. These results suggest that the cannabinoid binding site is associated with a nucleotide-utilizing protein possessing multiple regulatory subsites.  相似文献   

10.
Two different monoclonal antibodies, characterized initially as binding synaptic terminal regions of rat brain, bind a 65,000-dalton protein, which is exposed on the outer surface of brain synaptic vesicles. Immunocytochemical experiments at the electron microscope level demonstrate that these antibodies bind the vesicles in many different types of nerve terminals. The antibodies have been used successfully to purify synaptic vesicles from crude brain homogenates by immunoprecipitation onto the surface of polyacrylamide beads. The profiles of the structures precipitated by these beads are almost exclusively vesicular, confirming the vesicle-specificity of the antibodies. In SDS gels, the antibodies bind a single protein of 65,000 daltons. The two antibodies are not identical, but compete for binding sites on this protein. Immune competition experiments also demonstrate that the antigenic components on the 65,000-dalton protein are widely distributed in neuronal and neural secretory tissues. Detectable antigen is not found in uninnervated tissue--blood cells and extrajunctional muscle. Low levels are found in nonneural secretory tissues; it is not certain whether this reflects the presence of low amounts of the antigen on all the exocytotic vesicles in these tissues or whether the antigen is found only in neuronal fibers within these tissues. The molecular weight and at least two antigenic determinants of the 65,000-dalton protein are highly conserved throughout vertebrate phylogeny. The two antibodies recognize a 65,000-dalton protein present in shark, amphibia, birds, and mammals. The highly conserved nature of the determinants on this protein and their specific localization on secretory vesicles of many different types suggest that this protein may be essential for the normal function of neuronal secretory vesicles.  相似文献   

11.
Calpain and synaptic function   总被引:1,自引:0,他引:1  
Proteolysis by calpain is a unique posttranslational modification that can change integrity, localization, and activity of endogenous proteins. Two ubiquitous calpains, mu-calpain and m-calpain, are highly expressed in the central nervous system, and calpain substrates such as membrane receptors, postsynaptic density proteins, kinases, and phosphatases are localized to the synaptic compartments of neurons. By selective cleavage of synaptically localized molecules, calpains may play pivotal roles in the regulation of synaptic processes not only in physiological states but also during various pathological conditions. Activation of calpains during sustained synaptic activity is crucial for Ca2+-dependent neuronal functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking, and structural stabilization. Overactivation of calpain following dysregulation of Ca2+ homeostasis can lead to neuronal damage in response to events such as epilepsy, stroke, and brain trauma. Calpain may also provide a neuroprotective effect from axotomy and some forms of glutamate receptor overactivation. This article focuses on recent findings on the role of calpain-mediated proteolytic processes in potentially regulating synaptic substrates in physiological and pathophysiological events in the nervous system.  相似文献   

12.
In this work we present a model of the kindling effect based on the Hopf bifurcation for a system of ordinary differential equations. The model shows how quantitative changes in the physiological parameters at the microscopic, synaptic scale, produce the afterdischarge which is a macroscopic effect at the neuronal network scale. The presynaptic mechanisms are based on the vesicular hypothesis, or more generally on the quantal theory of synaptic transmission. The postsynaptic processes rely on Granit's law. This model gives a consistent framework which organizes and explains several experimental observations.  相似文献   

13.
Cell-adhesion molecules of the immunoglobulin superfamily play critical roles in brain development, as well as in maintaining synaptic plasticity, the dysfunction of which is known to cause cognitive impairment. Recently dysfunction of KIRREL3, a synaptic molecule of the immunoglobulin superfamily, has been implicated in several neurodevelopmental conditions including intellectual disability, autism spectrum disorder, and in the neurocognitive delay associated with Jacobsen syndrome. However, the molecular mechanisms of its physiological actions remain largely unknown. Using a yeast two-hybrid screen, we found that the KIRREL3 extracellular domain interacts with brain expressed proteins MAP1B and MYO16 and its intracellular domain can potentially interact with ATP1B1, UFC1, and SHMT2. The interactions were confirmed by co-immunoprecipitation and colocalization analyses of proteins expressed in human embryonic kidney cells, mouse neuronal cells, and rat primary neuronal cells. Furthermore, we show KIRREL3 colocalization with the marker for the Golgi apparatus and synaptic vesicles. Previously, we have shown that KIRREL3 interacts with the X-linked intellectual disability associated synaptic scaffolding protein CASK through its cytoplasmic domain. In addition, we found a genomic deletion encompassing MAP1B in one patient with intellectual disability, microcephaly and seizures and deletions encompassing MYO16 in two unrelated patients with intellectual disability, autism and microcephaly. MAP1B has been previously implicated in synaptogenesis and is involved in the development of the actin-based membrane skeleton. MYO16 is expressed in hippocampal neurons and also indirectly affects actin cytoskeleton through its interaction with WAVE1 complex. We speculate KIRREL3 interacting proteins are potential candidates for intellectual disability and autism spectrum disorder. Moreover, our findings provide further insight into understanding the molecular mechanisms underlying the physiological action of KIRREL3 and its role in neurodevelopment.  相似文献   

14.
In the brain, the polyamines spermidine (Spd) and spermine (Spm) serve highly specific functions by interacting with various ion channel receptors intimately involved with synaptic signaling. Both, glial cells and neurons contain Spd/Spm, but release and uptake mechanisms could re-distribute polyamines between cell types. The cellular and subcellular localization of polyamine biosynthetic enzymes may therefore offer a more appropriate tool to identify local sources of enhanced Spd/Spm synthesis, which may be related with specific roles in neuronal circuits and synaptic function. A recently characterized antibody against Spd synthase was therefore used to screen the rat brain for compartment-specific peaks in enzyme expression. The resulting labeling pattern indicated a clearly heterogeneous expression predominantly localized to neurons and neuropil. The highest levels of Spd synthase expression were detected in the accumbens nucleus, taenia tecta, cerebellar cortex, cerebral cortical layer I, hippocampus, hypothalamus, mesencephalic raphe nuclei, central and lateral amygdala, and the circumventricular organs. Besides a diffuse labeling of the neuropil in several brain areas, the distinct labeling of mossy fiber terminals in the cerebellar cortex directly indicated a synaptic role for Spd synthesis. Electron microscopy revealed a preferential distribution of the immunosignal in synaptic vesicle containing areas. A pre-synaptic localization was also observed in parallel and climbing fiber terminals. Electrophysiological recordings in acute cerebellar slices revealed a Spd-induced block of evoked extracellular field potentials resulting from mossy fiber stimulation in a dose-dependent manner.  相似文献   

15.
The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.  相似文献   

16.
Insulin-like growth factors (IGFs) are present in the brain throughout life. While their role as modulators of brain growth and differentiation during development is becoming apparent, their possible involvement in adult brain function is less known. Nevertheless, accumulating evidence indicates a role for IGFs in brain plasticity processes. Specifically, IGFs modulate synaptic efficacy by regulating synapse formation, neurotransmitter release and neuronal excitability. IGFs also provide constant trophic support to target cells in the brain and in this way maintain appropriate neuronal function. Pathological dearrangement of this trophic input may lead to brain disease. Molecular targets of the IGFs in the adult brain may include pre- and post-synaptic proteins involved in synaptic contacts, membrane channels, neurite-guiding molecules, extracellular matrix components and glial-derived intercellular messengers. Future studies on the role of IGFs in the adult brain may help unravel the relationship between neuronal plasticity and brain disease.  相似文献   

17.
M J Twery  R L Moss 《Peptides》1985,6(4):609-613
The effects of iontophoretically applied human pancreatic growth hormone-releasing factor (hpGRF), peptide histidine isoleucine (PHI-27), and somatostatin (SS) on the extracellular activity of single cells in the hypothalamus, thalamus, and cortex of the rat brain were studied in urethane-anesthetized, male rats. Neurons with membrane sensitivity to hpGRF, PHI-27, and SS were present in each brain region. Although neurons excited by these peptides were encountered in thalamus and hypothalamus, depression of neuronal firing was the predominant response observed. Overall, the neurons responding to hpGRF also possessed membrane sensitivity to PHI-27, whereas, the hpGRF sensitive neurons appeared to be more divided as to their ability to respond to SS. The results clearly demonstrate that hpGRF and PHI-27 are capable of affecting the membrane excitability of neurons in several brain regions. The distribution of neurons sensitive to hpGRF suggests that hypothalamic GRF, in addition to its well documented role in the regulation of pituitary growth hormone secretion, may subserve other physiological events in the rat central nervous system as a neurotransmitter and/or neuromodulator.  相似文献   

18.
Abstract: Subcellular fractions from rat cerebellum and other tissues were examined for the presence of a 240K glycoprotein, designated GP-A. Previous results have shown that GP-A is enriched in cerebellum synaptic junction (SJ) fractions when compared to parent synaptic plasma membrane (SPM) fractions and is not detected in forebrain SPM or SJ fractions. In the present studies, GP-A was not detected in myelin, mitochondria, purified nuclei, or cytosolic fractions from cerebellum, but was present in microsomal fractions. GP-A is partially soluble in the non-ionic detergent Triton X-100 and is completely soluble when cerebellum SPMs are treated with the ionic detergent N-lauryl sarcosinate. The solubilization of GP-A from cerebellum membranes was shown to be a function of bound calcium ions, e.g., pretreating SPMs with 100 μM-1mM Ca2+ decreased the solubility of GP-A in Triton by approximately threefold. GP-A is a major concanavalin A (Con A)-binding glycoprotein in cerebellum SJ fractions and migrates on sodium dodecyl sulfate (SDS) gels with a slower relative mobility than the 235K/ 230K fodrin doublet. Comparisons between purified fodrin and the 235K/230K doublet in cerebellum and fore-brain synaptic fractions by two-dimensional peptide mapping indicated that they were identical. The Con A-binding property of GP-A was exploited to purify it by affinity chromatography with agarose-Con A. Peptide mapping comparisons between affinity-purified GP-A and GP-A in SPM and SJ fractions indicated that GP-A in synaptic fractions is apparently homogeneous. Peptide map comparisons between GP-A and 235K fodrin polypeptide indicated that these two synaptic components are highly related (50% of their respective peptides are shared). The 235K fodrin polypeptide in SJs reacted with anti-fodrin antisera on Western blots; however, GP-A failed to cross-react. These observations, together with results from previous studies, indicate that GP-A is highly enriched in cerebellum compared to other neuronal and nonneural tissues. Moreover, GP-A is enriched in SJs relative to SPM fractions, is related to fodrin, and is most likely a cell-surface glycoprotein at asymmetric synapses in cerebellum. GP-A may be involved in neuronal recognition or synaptic transmission in the cerebellum. The important role of calcium in synaptic transmission, together with the decreased solubility of GP-A in Triton that results from micromolar concentrations of calcium, suggest that GP-A may play a role in stabilizing cerebellar synaptic junctions.  相似文献   

19.
Divalent cation ATPases were prepared from rat brain synaptic vesicles, synaptosomal plasma membranes, and plasma membranes from the brain stem and sciatic nerve and tested for optimal stimulation by Mn2+, Mg2+, or Ca2+. ATPase in the synaptic vesicle subfraction was optimally stimulated by Mn2+. All plasma membrane preparations were optimally stimulated by Mg2+. Separate Mn2+ and Mg2+ ATPases could not be distinguished by either chemical inactivation or substrate preference criteria. Mn2+ stimulated ATPase in the micromolar range and it is suggested that Mn2+ interaction with ATPase may be of physiological and/or toxicological importance by being related to the cellular metabolism of this element.  相似文献   

20.
Summary The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways.It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号