首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing peroxidase utilisation in different industries encourages the search for high benefit/cost ratio purification methods such as aqueous two-phase partition. In this way, the partitioning behaviour of peroxidase from Armoracia rusticanaroots in polyvinylpirrolidone/Reppal and polyvinylpirrolidone/salt aqueous two-phase systems was investigated. Based on these results, a two-step purification process was developed. In the first system (polyvinylpyrrolidone K30/Reppal PES 200, pH 7.0), cell debris and some contaminating proteins were shifted to the bottom phase while peroxidase concentrated in the top phase. After discarding the bottom phase, the second step involved addition of magnesium sulphate thus forming a second aqueous two-phase system. At this step, the enzyme was extracted into the salt-rich bottom phase. The overall yield was 75% and the purification factor 7.3.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
Summary Partition of purified horseradish peroxidase isoenzymes in aqueous two-phase systems was not affected by pH changes, but tie-line length and NaCl addition greatly increased the partition coefficient of all three isoenzymes, the former having more influence than the latter. In all systems, K were higher for acidic than those for neutral and basic isoenzymes, and K for basic were the lowest.  相似文献   

3.
Summary The production of a bi-specific monoclonal antibody that simultaneously recognizes mouse kappa light chains and horseradish peroxidase (HRP) for use as a general developing reagent in a wide variety of immunobased techniques is described. This antibody, named McC10, was produced by the fusion of an aminopterin-sensitive interspecies hybridoma which secretes rat monoclonal antibodies against HRP (RAP2·Ag) and splenocytes from a rat immunized with whole mouse immunoglobulin (Ig)G. The hybrid-hybridoma generated from this fusion expresses and secretes rat Igs of the IgG1 and IgG2a subclasses, as determined by radial immunodiffusion. In competitive binding solid-phase enzymatic assays, McC10 was found to cross-react with all four mouse IgG subclasses as well as mouse kappa light chains. In contrast, in this type of assay, McC10 did not appear to recognize mouse IgA, IgM or lambda light chains. However, IgM-bearing kappa light chains were recognized by immunocytochemistry. Epitope specificity of this bi-specific antibody was more clearly determined on immunoblots where McC10 was found to exclusively recognize mouse kappa light chains and display no cross-reactivity with mouse Ig heavy chains nor with kappa light chains from rat or rabbit. In addition, McC10 was used successfully in two-step immunocytochemistry (ICC) for the localization of enkephalin, nerve growth factor (NGF) receptor and paired helical filament-immunoreactive sites in rat brain, rat skin and human brain, respectively, using mouse IgG's and IgM's as primary antibodies. McC10 compared favourably with peroxidase-anti-peroxidase (PAP) ICC with respect to sensitivity but was markedly superior with respect to specificity when used in fixed human brain or rat skin. This study demonstrates some of the potential advantages of using an epitope specific monoclonal bi-specific developing reagent like McC10 in an immunobased technique like ICC. Its potential use in a variety of other immunobased procedures is discussed.  相似文献   

4.
Cell surface-associated changes in behaviour of cultured cells on partition in an aqueous two-phase polymer system were studied using FM3A cell line (a cultured mammary cancer of mouse) with respect to aging. The aqueous polymer system consisted of dextran, polyethyleneglycol and sodium phosphate, equilibrated at 6 degrees C to separate into two phases. Enzyme treatment of cells with neuraminidase reduced cell electrophoretic mobility, as well as the cell partition ratio. Hyaluronidase produced no observable effects on partition and cell electrophoretic mobility, suggesting that the partition is related to culture time was similar for both cell electrophoretic mobility and cell partition, showing a rise and fall of charge-associated cell surface change during cell growth, the maxium occurring at the beginning of exponential growth. This change was reflected in the pattern of countercurrent distribution of the cells in respective stages of growth. Countercurrent distribution with our two-phase system is expected to be capable of fractionating cell populations according to cell surface properties.  相似文献   

5.
The partition of substances in aqueous polymer two-phase systems is influenced by the molecular weight of the phase-forming polymers. We investigate how the effect of the molecular weight of the polymers depends on the molecular weight of the partitioned protein. We show that the magnitude of change of the partition is very small for proteins of molecular weights around 10 000, but increases almost linearly up to molecular weights of 250 000.  相似文献   

6.
The production of a bi-specific monoclonal antibody that simultaneously recognizes mouse kappa light chains and horseradish peroxidase (HRP) for use as a general developing reagent in a wide variety of immunobased techniques is described. This antibody, named McC10, was produced by the fusion of an aminopterin-sensitive interspecies hybridoma which secretes rat monoclonal antibodies against HRP (RAP2.Ag) and splenocytes from a rat immunized with whole mouse immunoglobulin (Ig)G. The hybrid-hybridoma generated from this fusion expresses and secretes rat Igs of the IgG1 and IgG2a subclasses, as determined by radial immunodiffusion. In competitive binding solid-phase enzymatic assays, McC10 was found to cross-react with all four mouse IgG subclasses as well as mouse kappa light chains. In contrast, in this type of assay, McC10 did not appear to recognize mouse IgA, IgM or lambda light chains. However, IgM-bearing kappa light chains were recognized by immunocytochemistry. Epitope specificity of this bi-specific antibody was more clearly determined on immunoblots where McC10 was found to exclusively recognize mouse kappa light chains and display no cross-reactivity with mouse Ig heavy chains nor with kappa light chains from rat or rabbit. In addition, McC10 was used successfully in two-step immunocytochemistry (ICC) for the localization of enkephalin, nerve growth factor (NGF) receptor and paired helical filament-immunoreactive sites in rat brain, rat skin and human brain, respectively, using mouse IgG's and IgM's as primary antibodies. McC10 compared favourably with peroxidase-anti-peroxidase (PAP) ICC with respect to sensitivity but was markedly superior with respect to specificity when used in fixed human brain or rat skin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Monoclonal antibodies to horseradish peroxidase were obtained. The interaction of two antibody clones with the enzyme was studied. Antibodies of one clone were found to inhibit the enzyme activity during the oxidation of 2.2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) diammonium salt and the cooxidation of luminol and luciferin. The latter was concomitant with a complete inhibition of the peroxidase activity. The values of binding constants as determined by the solid phase immunoenzymatic and homogeneous methods are equal to (1.2 +/- 0.5).10(8) M-1 and (1.8 +/- 0.2).10(11) M-1, respectively.  相似文献   

8.
9.
Cell surface-associated changes in behaviour of cultured cells on partition in an aqueous two-phase polymer system were studied using FM3A cell line (a cultured mammary cancer of mouse) with respect to aging.The aqueous polymer system consisted of dextran, polyethyleneglycol and sodium phosphate, equilibrated at 6°C to separate into two phases. Enzyme treatment of cells with neuraminidase reduced cell electrophoretic mobility, as well as the cell partition ratio. Hyaluronidase produced no observable effects on partition and cell electrophoretic mobility, suggesting that the partition is related to sialic acid-associated cell surface charges. The pattern of change in relation to culture time was similar for both cell electrophoretic mobility and cell partition, showing a rise and fall of charge-associated cell surface change during cell growth, the maximum occurring at the beginning of exponential growth. This change was reflected in the pattern of countercurrent distribution of the cells in respective stages of growth. Countercurrent distribution with our two-phase system is expected to be capable of fractionating cell populations according to cell surface properties.  相似文献   

10.
A novel affinity separation method in an aqueous two-phase system (ATPS) is suggested, using protein conjugated IgG as a ligand. For verification of the proposed approach, horseradish peroxidase (HRP) and human IgG was used as a ligand carrier and affinity ligand, respectively. The partition of the affinity ligand, human IgG, was controlled by the conjugation of HRP. Two ATPSs, one consisting of potassium phosphate (15%, w/w) and polyethylene glycol (PEG, M.W. 1450, 10%, w/w) and the other of dextran T500 (5%, w/w) and PEG (M.W. 8000, 5%, w/w), were used. The conjugated human IgG-HRP favored a PEG-rich top phase, whereas human IgG, rabbit anti-human IgG and goat anti-mouse IgG preferred a salt or dextran-rich bottom phase. Using the conjugated human IgG-HRP, rabbit anti-human IgG was successfully separated into a PEG-rich top phase from the mixture with goat anti-mouse IgG. The appropriate molar ratio between human IgG-HRP and rabbit anti-human IgG was around 3:1 and 1:1 for the salt and dextran-based ATPS, respectively. The dextran-based ATPS showed a better recovery yield and purity than the salt-based ATPS for the range of test conditions employed in this experiment. The yield and purity of the recovered rabbit anti-human IgG were 90.8 and 87.7%, respectively, in the dextran-based ATPS, while those in the salt-based ATPS were 78.2 and 73.2%.  相似文献   

11.
Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran-polyethylene glycol and dextran sulphate-polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone-antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions.  相似文献   

12.
M Tanaka  K Ishimori  I Morishima 《Biochemistry》1999,38(32):10463-10473
To enhance the oxidation activity for luminol in horseradish peroxidase (HRP), we have prepared three HRP mutants by mimicking a possible binding site for luminol in Arthromyces ramosus peroxidase (ARP) which shows 500-fold higher oxidation activity for luminol than native HRP. Spectroscopic studies by (1)H NMR revealed that the chemical shifts of 7-propionate and 8-methyl protons of the heme in cyanide-ligated ARP were deviated upon addition of luminol (4 mM), suggesting that the charged residues, Lys49 and Glu190, which are located near the 7-propionate and 8-methyl groups of the heme, are involved in the specific binding to luminol. The positively charged Lys and negatively charged Glu were introduced into the corresponding positions of Ser35 (S35K) and Gln176 (Q176E) in HRP, respectively, to build the putative binding site for luminol. A double mutant, S35K/Q176E, in which both Ser35 and Gln176 were replaced, was also prepared. Addition of luminol to the HRP mutants induced more pronounced effects on the resonances from the heme substituents and heme environmental residues in the (1)H NMR spectra than that to the wild-type enzyme, indicating that the mutations in this study induced interactions with luminol in the vicinity of the heme. The catalytic efficiencies (V(max)/K(m)) for luminol oxidation of the S35K and S35K/Q176E mutants were 1.5- and 2-fold improved, whereas that of the Q176E mutant was slightly depressed. The increase in luminol activity of the S35K and S35K/Q176E mutants was rather small but significant, suggesting that the electrostatic interactions between the positive charge of Lys35 and the negative charge of luminol can contribute to the effective binding for the luminol oxidation. On the other hand, the negatively charged residue would not be so crucial for the luminol oxidation. The absence of drastic improvement in the luminol activity suggests that introduction of the charged residues into the heme vicinity is not enough to enhance the oxidation activity for luminol as observed for ARP.  相似文献   

13.
Nicotine is the principal addictive component of tobacco. Blocking its passage from the lung to the brain with nicotine-specific antibodies is a promising approach for the treatment of smoking addiction. We have determined the crystal structure of nicotine bound to the Fab fragment of a fully human monoclonal antibody (mAb) at 1.85 Å resolution. Nicotine is almost completely (> 99%) buried in the interface between the variable domains of heavy and light chains. The high affinity of the mAb is the result of a charge–charge interaction, a hydrogen bond, and several hydrophobic contacts. Additionally, similarly to nicotinic acetylcholine receptors in the brain, two cation–π interactions are present between the pyrrolidine charge and nearby aromatic side chains. The selectivity of the mAb for nicotine versus cotinine, which is the major metabolite of nicotine and differs in only one oxygen atom, is caused by steric constraints in the binding site. The mAb was isolated from B cells of an individual immunized with a nicotine–carrier protein conjugate vaccine. Surprisingly, the nicotine was bound to the Fab fragment in an orientation that was not compatible with binding to the nicotine–carrier protein conjugate. The structure of the Fab fragment in complex with the nicotine–linker derivative that was used for the production of the conjugate vaccine revealed a similar position of the pyridine ring of the nicotine moiety, but the pyrrolidine ring was rotated by about 180°. This allowed the linker part to reach to the Fab surface while high-affinity interactions with the nicotine moiety were maintained.  相似文献   

14.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

15.
Mannose-specific binding sites for horseradish peroxidase (HRP) were studied in fixed sections of various tissues by a method reported previously. Liver sinusoidal cells, mast cells of lymph nodes, and alveolar macrophages of the lung and skin fibroblasts were main cell types showing mannose-specific binding of HRP. Macrophages, fibroblasts, and mast cells in the connective tissue of other organs also showed the reaction. However, macrophages of the spleen, and cultured 3T3 cells and L-cells did not give the reaction. The specificities of the binding reaction were studied by determining the approximate concentrations of competing sugars that suppressed the specific binding of HRP. It was found that the endogenous lectins in macrophages, fibroblasts, mast cells, and liver sinusoidal cells showed similar specificities toward various carbohydrates. D-Mannose and L-fucose had the highest affinity toward the lectins (competing ability for the binding of HRP). D-Mannose-6-phosphate, N-acetyl-D-glucosamine, D-glucose, D-ribose, and D-arabinose showed intermediate affinity, whereas D-xylose and D-galactose showed low affinity. Polymerized mannose in mannan and glycoproteins rich in mannose groups (invertase and ribonuclease B) showed much higher affinity to the binding sites than free mannose.  相似文献   

16.
C S Raman  R Jemmerson  B T Nall  M J Allen 《Biochemistry》1992,31(42):10370-10379
The kinetic and spectroscopic changes accompanying the binding of two monoclonal antibodies to the oxidized form of horse heart cytochrome c have been investigated. The two epitopes recognized by the antibodies are distinct and noninteracting: antibody 2B5 binds to native cytochrome c near a type II turn (residue 44) while antibody 5F8 binds on the opposite face of the protein near the amino terminus of an alpha-helical segment (residue 60). Antibody-cytochrome c binding obeys a simple bimolecular reaction mechanism with second-order rate constants approaching those expected for diffusion-limited protein-protein interactions. The association rate constants have small activation enthalpies and are inversely dependent on solvent viscosity, as expected for diffusion-controlled reactions. There is a moderate ionic strength dependence of the rate of association between the 2B5 antibody and cytochrome c, with the rate constant increasing about 4-fold as the ionic strength is varied between 0.14 and 0 M. Comparison of the rates for antibody-cytochrome c complex formation for binding to the reduced-native, oxidized-native, and alkaline conformations shows that for MAb 2B5 the forward rate constant depends slightly on cytochrome c conformation. Investigation of the pH-induced transition between the native and alkaline conformational states for free cytochrome c and for antibody-cytochrome c complexes shows that antibody binding stabilizes the native form of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Monoclonal anti-peroxidase antibodies (McAb) were generated by means of hybridization of BALB/c immune splenocytes with X-63.653 cells. Peroxidase-antiperoxidase (PAP) staining of fibroblast cultures with murine McAb against fibronectin was used for the detection of positive cultures. McAb AP-FC-2B4 were found to be highly efficient in different immunoenzyme tests, e.g., immunochemistry and immunoblotting. PAP method was used for histological diagnosis of invasive human breast cancer.  相似文献   

18.
Binding constants and column capacities are important factors for evaluating an affinity chromatography system. Scatchard plots based on classical equilibrium binding have been used to demonstrate how association constants and column capacities can be computed from simple binding experiments and a commercial computer program. The analysis has been demonstrated on a monoclonal antibody type IgG-1 Kappa against Serratia marcescens nuclease and a commercial protein-A column, Prosep-A. Additional analyses were performed with the same antibody and other protein-A affinity systems and the different binding constants and column capacities obtained confirmed the value of the analysis for evaluating an affinity system.  相似文献   

19.
The incubation of horseradish peroxidase C (HRPC) with millimolar concentrations of nickel, at room temperature and at pH 4.0, induced the progressive formation of a metal-enzyme complex characterized by alterations of the enzyme Soret absorption band that were time- as well as nickel concentration- dependent. For any given incubation period between 1 and 60 min, 2 values for the apparent dissociation constant (K(d)) were found, suggesting the presence of binding sites with different affinities for nickel. The value of each K(d) dropped as the incubation time increased, indicating a progressive stabilization of the metal-enzyme complex. Hill plots suggested a cooperative binding of up to four Ni2+ ions per molecule of HRPC. The inhibition of the enzymatic activity by nickel was studied by following the H2O2-mediated oxidation of o-dianisidine by HRPC under steady-state kinetic conditions. Ni2+ was found to be either a noncompetitive or a mixed inhibitor of HRPC depending both on the duration of preincubation with the enzyme and on Ni2+ concentration. The enzyme remained active only over a limited metal concentration range and data indicated that binding of one Ni2+ affected the substrate binding site, binding of a second Ni2+ affected both substrate and peroxide binding sites, and binding of more than 2 Ni2+ per HRPC molecule led to complete loss of enzymatic activity. Results pointed to the damaging effects of prolonged exposure to heavy metals and also to the existence of a critical metal concentration beyond which immediate abolishing of enzymatic activity was observed.  相似文献   

20.
Peroxidases typically bind their reducing substrates weakly, with K(d) values in the millimolar range. The binding of benzhydroxamic acid (BHA) to ferric horseradish peroxidase isoenzyme C (HRPC) [K(d) = 2.4 microM; Schonbaum, G. R. (1973) J. Biol. Chem. 248, 502-511] is a notable exception and has provided a useful tool for probing the environment of the peroxidase aromatic-donor-binding site and the distal heme cavity. Knowledge of the underlying thermodynamic driving forces is key to understanding the roles of the various H-bonding and hydrophobic interactions in substrate binding. The isothermal titration calorimetry results of this study on the binding of aromatic hydroxamic acid analogues to ferric HRPC under nonturnover conditions (no H(2)O(2) present) confirm the significance of H-bonding interactions in the distal heme cavity in complex stabilization. For example, the binding of BHA to HRPC is enthalpically driven at pH 7.0, with the H-bond to the distal Arg38 providing the largest contribution (6.74 kcal/mol) to the binding energy. The overall relatively weak binding of the hydroxamic acid analogues to HRPC is due to large entropic barriers (-11.3 to -37.9 eu) around neutral pH, with the distal Arg38 acting as an "entropic gate keeper". Dramatic enthalpy-entropy compensation is observed for BHA and 2-naphthohydroxamic acid binding to HRPC at pH 4.0. The enthalpic loss and entropic gain are likely due to increased flexibility of Arg38 in the complexes at low pH and greater access by water to the active site. Since the Soret absorption band of HRPC is a sensitive probe of the binding of hydroxamic acids and their analogues, it was used to investigate the binding of six donor substrates over the pH range of 4-12. The negligible pH dependence of the K(d) values corrected for substrate ionization suggests that enthalpy-entropy compensation is operative over a wide pH range. Examination of the thermodynamics of binding of ring-substituted hyrazides to HRPC reveals that the binding affinities of aromatic donors are highly sensitive to the position and nature of the ring substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号