共查询到20条相似文献,搜索用时 15 毫秒
1.
Periplasmic hydrogenase [hydrogen:ferricytochrome c3 oxidoreductase, EC 1.12.2.1] from Desulfovibrio vulgaris Miyazaki K (MK) was purified to homogeneity. Its chemical and immunological properties were examined and compared with those of other Desulfovibrio hydrogenases. The pure enzyme showed a specific activity of 1,000 mumol H2 evolution min-1 (mg protein)-1. The enzyme had a molecular weight of 50,000 as estimated by gel filtration and consisted of a single polypeptide chain. The absorption spectrum of the enzyme was characteristic of an iron-sulfur protein and the extinction coefficients at 400 and 280 nm were 34 and 104 mM-1. cm-1, respectively. It contained 9.4 mol iron and 6.9 mol of acid-labile sulfide per mol. The amino acid composition of the preparation was very similar to the value reported for D. desulfuricans NRC 49001 hydrogenase. Rabbit antisera were prepared against the enzyme of D. vulgaris MK. Ouchterlony double diffusion and immunotitration tests of crude extracts from several strains of Desulfovibrio revealed that the enzyme from MK cells was immunologically identical with those from D. vulgaris Hildenborough and D. desulfuricans NRC 49001, but different from those from D. vulgaris Miyazaki F (MF) and Miyazaki Y, and D. desulfuricans Essex 6 strains. It is concluded that among Desulfovibrio hydrogenases, those from D. vulgaris MK, D. vulgaris Hildenborough and D. desulfuricans NRC 49001 form one group in terms of both subunit structure and antigenicity. 相似文献
2.
O. Trofanchuk M. Stein Ch. Geßner F. Lendzian Y. Higuchi W. Lubitz 《Journal of biological inorganic chemistry》2000,5(1):36-44
The Ni-A and the Ni-B forms of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F have been studied in single crystals by continuous wave and pulsed EPR spectroscopy at different temperatures (280?K, 80?K, and 10?K). For the first time, the orientation of the g-tensor axes with respect to the recently published atomic structure of the active site at 1.8?Å resolution was elucidated for Ni-A and Ni-B. The determined g-tensors have a similar orientation. The configuration of the electronic ground state is proposed to be Ni(III) 3d 1 z2 for Ni-A and Ni-B. The g z principal axis is close to the Ni-S(Cys549) direction; the g x and the g y axes are approximately along the Ni-S(Cys546) and Ni-S(Cys81) bonds, respectively. It is proposed that the difference between the Ni-A and Ni-B states lies in a protonation of the bridging ligand between the Ni and the Fe. 相似文献
3.
The active site in the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F has been investigated by Fourier transform infrared (FTIR) spectroscopy. Analysis of the spectra allowed the three diatomic inorganic ligands to Fe in this enzyme to be identified as one CO molecule and two CN(-) molecules. Furthermore, pH-dependent redox titrations were performed to determine the midpoint potentials as well as the pK value of the respective reactions and revealed that each single-electron redox transition is accompanied by a single-proton transfer step. The comparison of these spectra with those published for other [NiFe] hydrogenases shows that the electronic structure of the active sites of these enzymes and their redox processes are essentially the same. Nevertheless, differences with respect to the frequency of the CO band and the pH dependence of the Ni-R states have been observed. Finally, the frequency shifts of the bands in the IR spectra were interpreted with respect to the electronic configuration of the redox intermediates in the catalytic cycle. 相似文献
4.
Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfovibrio vulgaris Miyazaki F 总被引:5,自引:0,他引:5
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties. 相似文献
5.
Cytochrome c3 isolated from a sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki F, is a tetraheme protein. Its physiological partner, [NiFe] hydrogenase, catalyzes the reversible oxidoreduction of molecular hydrogen. To elucidate the mechanism of electron transfer between cytochrome c3 and [NiFe] hydrogenase, the transient complex formation by these proteins was investigated by means of NMR. All NH signals of uniformly 15N-labeled ferric cytochrome c3 except N-terminus, Pro, and Gly73 were assigned. 1H-15N HSQC spectra were recorded for 15N-labeled ferric and ferrous cytochrome c3, in the absence and presence of hydrogenase. Chemical shift perturbations were observed in the region around heme 4 in both oxidation states. Additionally, the region between hemes 1 and 3 in ferrous cytochrome c3 was affected in the presence of hydrogenase, suggesting that the mode of interaction is different in each redox state. Heme 3 is probably the electron gate for ferrous cytochrome c3. To investigate the transient complex of cytochrome c3 and hydrogenase in detail, modeling of the complex was performed for the oxidized proteins using a docking program, ZDOCK 2.3, and NMR data. Furthermore, the roles of lysine residues of cytochrome c3 in the interaction with hydrogenase were investigated by site-directed mutagenesis. When the lysine residues around heme 4 were replaced by an uncharged residue, methionine, one by one, the Km of the electron-transfer kinetics increased. The results showed that the positive charges of Lys60, Lys72, Lys95, and Lys101 around heme 4 are important for formation of the transient complex with [NiFe] hydrogenase in the initial stage of the cytochrome c3 reduction. This finding is consistent with the most possible structure of the transient complex obtained by modeling. 相似文献
6.
Hisao Osuka Yasuhito Shomura Hirofumi Komori Naoki Shibata Satoshi Nagao Yoshiki Higuchi Shun Hirota 《Biochemical and biophysical research communications》2013,430(1):284-288
[NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni–Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm?1 of the Ni-A state shifted to 1971, 2086 and 2098 cm?1 in the Ni-AL state. The g-values of gx = 2.30, gy = 2.23 and gz = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for ?0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site. 相似文献
7.
The properties of purified hydrogenase [EC 1.12.2.1] solubilized from particulate fraction of sonicated Desulfovibrio vulgaris cells are described. The enzyme was a brownish iron-sulfur protein of molecular weight 89,000, composed of two different subunits (mol. wt.: 28,000 and 59,000), and it contained 7-9 iron atoms and 7-8 labile sulfide ions. Molybdenum was not detected in the preparation. The absorption spectrum of the enzyme was characteristic of iron-sulfur proteins. The millimolar absorbance coefficients of the enzyme were about 164 at 280nm, and 47 at 400nm. The absorption spectrum of the enzyme in the visible region changed upon incubating the enzyme under H2 in the presence of cytochrome c3, but not in its absence. This spectral change was due to the reduction of the enzyme. The absorbance ratio at 400nm of the reduced and the oxidized forms of the enzyme was 0.66. The activity of the enzyme was hardly affected by metal-complexing agents such as cyanide, azide, 1,10-phenanthroline, etc., except for CO, which was a strong inhibitor of the enzyme. The activity was inhibited by SH-reagents such as p-chloromercuribenzenesulfonate. The enzyme was significantly resistant to urea, but susceptible to sodium dodecyl sulfate. These properties were very similar to those of clostridial hydrogenase [EC 1.12.7.1], in spite of differences in the acceptor specificity and subunit structure. 相似文献
8.
Hydrogenase [hydrogen: ferricytochrome c3 oxidoreductase, EC 1.12.2.1] solubilized and purified from the particulate fraction of Desulfovibrio vulgaris Miyazaki F (IAM 12604) contains 8 iron and 8 labile sulfide ions in one molecule which is composed of two unequal subunits (Mr: 60,000 + 29,000). It does not contain nickel atoms. The EPR (electron paramagnetic resonance) spectrum has an isotropic signal at g = 2.017 which is independent of the temperature. The peak-to-peak width of the signal is about 20 G. The signal intensity is nearly equivalent to 1 unpaired electron per molecule. No other signals can be detected in the field range between 2,240 and 4,240 G (which corresponds to g-values between 2.91 and 1.54). Ferricyanide has only a little effect on the shape and intensity of the EPR signal. The hydrogenase reduced under H2 is EPR silent. The M?ssbauer spectrum has no hyperfine splitting at 4K. The isomer shift and quadrupole splitting at 77K are 0.38 and 0.87 mm/s, respectively. Based on these magnetic measurements, the structure of the active center of hydrogenase was suggested to be [4Fe-4S]3+ + [4Fe-4S]2+. 相似文献
9.
Stefanie Foerster Maurice van Gastel Marc Brecht Wolfgang Lubitz 《Journal of biological inorganic chemistry》2005,10(1):51-62
Electron nuclear double resonance (ENDOR) and hyperfine sublevel correlation spectroscopy (HYSCORE) are applied to study the active site of catalytic [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F in the reduced Ni-C state. These techniques offer a powerful tool for detecting nearby magnetic nuclei, including a metal-bound substrate hydrogen, and for mapping the spin density distribution of the unpaired electron at the active site. The observed hyperfine couplings are assigned via comparison with structural data from X-ray crystallography and knowledge of the complete g-tensor in the Ni-C state (Foerster et al. (2003) J Am Chem Soc 125:83–93). This is found to be in good agreement with density functional theory calculations. The two most strongly coupled protons (aiso=13.7, 11.8 MHz) are assigned to the -CH2 protons of the nickel-coordinating cysteine 549, and a third proton (aiso=8.9 MHz) is assigned to a -CH2 proton of cysteine 546. Using D2O exchange experiments, the presence of a hydride in the bridging position between the nickel and iron—recently been detected for a regulatory hydrogenase (Brecht et al. (2003) J Am Chem Soc 125:13075–13083)—is experimentally confirmed for the first time for catalytic hydrogenases. The hydride exhibits a small isotropic hyperfine coupling constant (aiso=–3.5 MHz) since it is bound to Ni in a direction perpendicular to the z-axis of the Ni
orbital. Nitrogen signals that belong to the nitrogen N of His-88 have been identified. This residue forms a hydrogen bond with the spin-carrying Ni-coordinated sulfur of Cys-549. Comparison with other hydrogenases reveals that the active site is essentially the same in all proteins, including a regulatory hydrogenase. 相似文献
10.
Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F 总被引:1,自引:0,他引:1
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction. 相似文献
11.
Jun Aketagawa Kimiko Kojo Makoto Ishimoto 《Bioscience, biotechnology, and biochemistry》2013,77(8):2359-2365
The sulfite reductase of Desulfovibrio vulgaris, strain Miyazaki F (MF), was purified by ammonium sulfate precipitation and chromatography on DEAE-cellulose, Ultrogel AcA34, and hydroxylapatite. The molecular weight was estimated to be 180,000 by gel filtration. It had a subunit structure of α2β2; the molecular weight of the α subunit was 50,000 and that of β, 39,000. The absorption spectrum with characteristic peaks at 629 and 409 nm and the amino acid composition resembled those of the sulfite reductase from D. vulgaris, Miyazaki K. The MF enzyme reduced sulfite to trithionate, thiosulfate, and sulfide by hydrogen when coupled with a hydrogenase-methyl viologen system, like other sulfite reductases from Desulfovibrio. 相似文献
12.
We have carried out a detailed redox titration monitored by EPR on the hydrogenase from Desulfovibrio vulgaris Miyazaki. Typical 3Fe and nickel signals have been observed, which are very similar to those given by Desulfovibrio gigas hydrogenase in all the characteristic redox states of the enzyme. This confirms that D. vulgaris Miyazaki hydrogenase is a Ni-Fe enzyme closely related to that from D. gigas, as was recently proposed on the basis of sequence comparisons (Deckers, H.M., Wilson, F.R. and Voordouw, G. (1990) J. Gen. Microb. 136, 2021-2028). 相似文献
13.
Magnetization and magnetic susceptibility measurements revealed that the hydrogenase [EC 1.12.2.1] from Desulfovibrio vulgaris Miyazaki F has an independent unpaired electron in its iron-sulfur cluster. The paramagnetic center of the Desulfovibrio hydrogenase is, therefore, different from that in the Chromatium hydrogenase which interacts with another paramagnetic center, probably nickel. 相似文献
14.
Resonance Raman spectra of the soluble-domain of a membrane-bound hydrogenase from Desulfovibrio vulgaris Miyazaki F were recorded in different oxidation states. In the oxidized state, the Raman band due to the totally symmetric stretching mode of the iron-sulfur cluster was observed at 341 cm-1, which was attributed to the 3Fe-4S cluster. In the hydrogen-reduced state, only a weak and broad band was observed in its vicinity. During the process of reoxidation, a Raman band assignable to the 4Fe-4S cluster was observed at 333 cm-1 in the first step. Then, the band at 341 cm-1 became stronger and eventually dominated the spectrum. Corresponding changes were observed in the visible absorption spectra of the same sample. It was concluded from these observations that this hydrogenase has both 3Fe-4S and 4Fe-4S clusters and takes on at least three oxidation states, namely, oxidized, intermediate, and hydrogen-reduced ones. 相似文献
15.
Two ferredoxins, Fd I and Fd II, were isolated and purified from Desulfovibrio vulgaris Miyazaki. The major component, Fd I, is an iron-sulfur protein of Mr 12,000, composed of two identical subunits. The absorption spectra of Fd I and Fd II have a broad absorption shoulder near 400 nm characteristic of iron-sulfur proteins. The purity index, A400/A280, of Fd I is 0.69, and its millimolar absorption coefficient at 400 nm is 3.73 per Fe. It contains two redox centers with discrete redox behaviors. The amino acid composition and the N-terminal sequence of Fd I are similar to those of Fd III of Desulfovibrio africanus Benghazi and Fd II of Desulfovibrio desulfuricans Norway. Fd I does not serve as an electron carrier for the hydrogenase of D. vulgaris Miyazaki, but it serves as a carrier for pyruvate dehydrogenase of this bacterium. The evolution of H2 from pyruvate was observed by a reconstructed system containing purified hydrogenase, cytochrome C3, Fd I, partially purified pyruvate dehydrogenase, and CoA. The H2-sulfite reducing system can be reconstructed from the purified hydrogenase, cytochrome C3, Fd I and desulfoviridin (sulfite reductase), but the reaction rate is very slow compared to that of the crude extract at the same molar ratio of the components. 相似文献
16.
Cytoplasmic membranes were isolated from the cells of a sulfate-reducing strict anaerobe Desulfovibrio vulgaris Miyazaki F and membrane-bound cytochromes were characterized. Redox difference spectra at 77 K revealed the presence of cytochromes with the alpha peaks at 552 and 556 nm while CO-binding difference spectra showed the presence of o-type cytochrome(s). Partial purification of the cytochromes demonstrated that the membranes contain cytochromes c550, c551, c556 and possibly d1 besides high molecular mass cytochrome c and cytochrome c3. It turned out that two kinds of novel CO-binding c-type cytochromes are present in the membrane. The membranes and a partially purified fraction showed weak ubiquinol-1 oxidase activity but no cytochrome c oxidase activity. Results suggest that D. vulgaris does not express the heme-copper terminal oxidase under our growth conditions in spite of the presence of the col gene, which is homologous to the gene of subunit I of the aa3-type oxidase. 相似文献
17.
Kitamura M Takayama Y Kojima S Kohno K Ogata H Higuchi Y Inoue H 《Biochimica et biophysica acta》2004,1676(2):172-181
The gene encoding an enolase from Desulfovibrio vulgaris (Miyazaki F) was cloned and overexpressed in Escherichia coli. A 2.1-kb DNA fragment, isolated from D. vulgaris (Miyazaki F) by double digestion with PstI and BamHI, contained an enolase gene (eno) and part of the methylenetetrahydrofolate dehydrogenase gene (folD). The nucleotide sequence of eno indicates that the protein monomer is composed of 434 amino acids. An expression system for eno under control of the T7 promoter was constructed in E. coli. The purified His-tagged enolase formed a homooctamer and was active in the formation of phosphoenolpyruvate (PEP) as well as in the reverse reaction, the formation of D-(+)-2-phosphoglyceric acid (2-PGA). The pH dependence and kinetic properties of the recombinant enolase from the sulfate-reducing bacterium were also studied. The amounts of eno mRNA when the bacterium was grown on glycerol or glucose were compared to that when D. vulgaris was grown on lactate. 相似文献
18.
Maurice van Gastel Matthias Stein Marc Brecht Olga Schröder Friedhelm Lendzian Robert Bittl Hideaki Ogata Yoshiki Higuchi Wolfgang Lubitz 《Journal of biological inorganic chemistry》2006,11(1):41-51
The catalytic center of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F in the oxidized states was investigated by electron paramagnetic resonance and electron–nuclear double resonance
spectroscopy applied to single crystals of the enzyme. The experimental results were compared with density functional theory
(DFT) calculations. For the Ni-B state, three hyperfine tensors could be determined. Two tensors have large isotropic hyperfine
coupling constants and are assigned to the β-CH2 protons of the Cys-549 that provides one of the bridging sulfur ligands between Ni and Fe in the active center. From a comparison
of the orientation of the third hyperfine tensor with the tensor obtained from DFT calculations an OH− bridging ligand has been identified in the Ni-B state. For the Ni-A state broader signals were observed. The signals of the
third proton, as observed for the “ready” state Ni-B, were not observed at the same spectral position for Ni-A, confirming
a structural difference involving the bridging ligand in the “unready” state of the enzyme.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.
Maurice van Gastel and Matthias Stein contributed equally to this work. 相似文献
19.
The amino acid sequence of ferredoxin (Fd) I, purified from Desulfovibrio vulgaris Miyazaki, has been established. Fd I is strikingly similar to Fd III of D. africanus Benghazi with 84% homology. Both have the sequence, -Cys-x-x-Asp-x-x-Cys-x-x-x-Cys-Pro- in the N-terminal half, and the sequence, -Cys-x-x-Cys-x-x-Cys-x-x-x-Cys-Glu- in the C-terminal half of the molecule, instead of the common sequences for ligation to the usual [4Fe-4S] clusters. Fd I has 76% homology to Fd II of D. desulfuricans Norway. 相似文献
20.
The complete primary structure of the hyn-region in the genome of Desulfovibrio vulgaris Miyazaki F (DvMF), encoding the [NiFe]-hydrogenase and two maturation proteins has been identified. Besides the formerly reported genes for the large and small subunits, this region comprises genes encoding an endopeptidase (HynC) and a putative chaperone (HynD). The complete genomic region covers 4086 nucleotides including the previously published upstream located promoter region and the sequences of the structural genes. A phylogenetic tree for both maturation proteins shows strongest sequential relationship to the orthologous proteins of Desulfovibrio vulgaris Hildenborough (DvH). Secondary structure prediction for HynC (168 aa, corresponding to a molecular weight of 17.9 kDa) revealed a practically identical arrangement of α-helical and β-strand elements between the orthologous protein HybD from E. coli and allowed a three-dimensional modelling of HynC on the basis of the formerly published structure of HybD. The putative chaperone HynD consists of 83 aa (molecular weight of 9 kDa) and shows 76% homology to DvH HynD. Preliminary experiments demonstrate that the operon is expressed under the control of its own promoter in Escherichia coli, although no further processing could be observed, providing evidence that additional proteins have to be involved in the maturation process. Accession numbers: DQ072852, HynC protein ID AAY90127, HynD protein ID AAY90128. 相似文献