首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-activated chloride channel apically localized in epithelial cells. In cystic fibrosis patients, the gene encoding this N-linked glycoprotein is mutated. About 70% of CF patients express a mutated form of CFTR, deleted at the phenylalanine residue at position 508 (deltaF508). CFTR-deltaF508 fails to exit the endoplasmic reticulum; it remains incompletely glycosylated and is rapidly degraded. To optimize CFTR detection for membrane localization studies and biochemical studies, we tagged wild-type and deltaF508 CFTR with the VSV-G epitope at their carboxy-terminal ends. We have generated pig kidney epithelial cell clones (LLCPK1) expressing VSV-G-tagged human wild-type and deltaF508-CFTR. In CFTR-expressing cells, the transfected protein is maturated and transported to the apical membrane where it is concentrated. The cells exhibit a strong anion channel activity after stimulation by cAMP, as demonstrated by a halide sensitive fluorescent dye assay (6-methoxy-N-ethylquinominium, SPQ), and whole-cell patch-clamp approach. This activity of CFTR-VSV-G is indistinguishable from the wild-type CFTR. In contrast, in cells expressing tagged deltaF508-CFTR or in non-transfected cells, no anion channel activity could be detected after stimulation by cAMP. In deltaF508-CFTR-VSV-G-expressing cells, the mutated CFTR remained in the incompletely glycosylated form and was localized in the endoplasmic reticulum. These cell lines reproduce the cellular fate of wild-type and mutated CFTR-deltaF508. To our knowledge, they are the first differentiated epithelial cell lines stably expressing tagged CFTR and CFTR-deltaF508 in which cellular processing and functional activity of these two proteins are reproduced. Thus the addition of the VSV-G epitope does not impair the localization and function of CFTR, and these cell lines can be used to examine CFTR function in vitro.  相似文献   

2.
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.  相似文献   

3.
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF gene (cftr). Physiologically, CF is characterized by an abnormal chloride secretion in epithelia due to a dysfunction of a mutated cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a cAMP-dependent chloride channel whose most frequent mutation, deltaF508, leads to an aberrantly folded protein which causes a dysfunction of the channel. However, a growing number of reports suggest that modifier genes and environmental factors are involved in the physiology of CF. To identify proteins whose expression depends on wild-type WT-CFTR or deltaF508-CFTR, we chose a global proteomic approach based on the use of two-dimensional gel electrophoresis (2-DE) and mass spectrometry. The experiments were carried out with HeLa cells stably transfected with WT-CFTR (pTCFWT) or deltaF508-CFTR (pTCFdeltaF508). These experiments unmasked keratin 8 (K8) and 18 (K18) which were differentially expressed in pTCFWT vs. pTCFdeltaF508. An immunoblot of K18 confirmed the 2-DE results. Intracellular localization experiments of WT-CFTR, deltaF508-CFTR, K8, and K18 suggest that the expression of these proteins are linked, and that the concentrations of K8 and K18 and/or their distribution may be involved in the traffic of WT-CFTR/deltaF508-CFTR. A functional assay for CFTR revealed that specifically lowering K18 expression or changing its distribution leads to the delivery of functional deltaF508-CFTR to the plasma membrane. This work suggests a novel function of K18 in CF.  相似文献   

4.
Phosphorylation of the R domain is required for cystic fibrosis transmembrane conductance regulator (CFTR) channel gating, and cAMP/protein kinase A (PKA) simulation can also elicit insertion of CFTR into the plasma membrane from intracellular compartments (Bertrand, C. A., and Frizzell, R. A. (2003) Am. J. Physiol. 285, C1-C18). We evaluated the structural basis of regulated CFTR trafficking by determining agonist-evoked increases in plasma membrane capacitance (Cm) of Xenopus oocytes expressing CFTR deletion mutants. Expression of CFTR as a split construct that omitted the R domain (Deltaamino acids 635-834) produced a channel with elevated basal current (Im) and no DeltaIm or trafficking response (DeltaCm) upon cAMP/PKA stimulation, indicating that the structure(s) required for regulated CFTR trafficking are contained within the R domain. Additional deletions showed that removal of amino acids 817-838, a 22-amino acid conserved helical region having a net charge of -9, termed NEG2 (Xie, J., Adams, L. M., Zhao, J., Gerken, T. A., Davis, P. B., and Ma, J. (2002) J. Biol. Chem. 277, 23019-23027), produced a channel with regulated gating that lacked the agonist-induced increase in CFTR trafficking. Injection of NEG2 peptides into oocytes expressing split DeltaNEG2 CFTR prior to stimulation restored the agonist-evoked DeltaCm, consistent with the concept that this sequence mediates the regulated trafficking event. In support of this idea, DeltaNEG2 CFTR escaped from the inhibition of wild type CFTR trafficking produced by overexpression of syntaxin 1A. These observations suggest that the NEG2 region at the C terminus of the R domain allows stabilization of CFTR in a regulated intracellular compartment from which it traffics to the plasma membrane in response to cAMP/PKA stimulation.  相似文献   

5.
6.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, DeltaF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous DeltaF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous DeltaF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

7.
Experiments have demonstrated that the cystic fibrosis transmembrane conductance regulator protein (CFTR), containing the most common cystic fibrosis (CF)-causing mutation (delta F508), reaches the plasma membrane in reduced amounts. Studies of a peptide model of CFTR indicate that the delta F508 mutated region is more sensitive to denaturating conditions. This paper proposes that altered protein folding accounts for these findings, and, thus, most cases of CF. Significantly, the hypothesis makes specific predictions about the effect of stabilizing conditions on mutant CFTR, and, further, suggests a new class of pharmaceuticals that may prove effective in the treatment of this important genetic disease.  相似文献   

8.
Previous studies in native tissues have produced conflicting data on the localization and metabolic fate of WT and deltaF508 cystic fibrosis transmembrane regulator (CFTR) in the lung. Combining immunocytochemical and biochemical studies utilizing new high-affinity CFTR mAbs with ion transport assays, we examined both 1) the cell type and region specific expression of CFTR in normal airways and 2) the metabolic fate of deltaF508 CFTR and associated ERM proteins in the cystic fibrosis lung. Studies of lungs from a large number of normal subjects revealed that WT CFTR protein localized to the apical membrane of ciliated cells within the superficial epithelium and gland ducts. In contrast, other cell types in the superficial, gland acinar, and alveolar epithelia expressed little WT CFTR protein. No deltaF508 CFTR mature protein or function could be detected in airway specimens freshly excised from a large number of deltaF508 homozygous subjects, despite an intact ERM complex. In sum, our data demonstrate that WT CFTR is predominantly expressed in ciliated cells, and deltaF508 CFTR pathogenesis in native tissues, like heterologous cells, reflects loss of normal protein processing.  相似文献   

9.
Defective activation of chloride channels is a hallmark of cystic fibrosis (CF). Recently we have described activation of a volume-sensitive, outwardly rectifying chloride conductance (I(OR)) through the src-like tyrosine kinase p56(lck). Here we show that p56(lck) activates I(OR) independently of CFTR. In lymphocytes from healthy donors, chloride channels could be opened by either intracellular cAMP, p56(lck) or osmotic swelling. In CF lymphocytes, p56(lck) and cell swelling but not cAMP could activate chloride channels. Regulation of I(OR) by p56(lck) thus represents an alternative pathway of stimulating membrane chloride conductance that is left intact in cystic fibrosis.  相似文献   

10.
The phosphodiesterase-5 inhibitor sildenafil is an established and approved drug to treat symptoms of a variety of human diseases. In the context of cystic fibrosis (CF), a genetic disease caused by a defective CFTR gene (e.g. ΔF508-CFTR), it was assumed that sildenafil could be a promising substance to correct impaired protein expression. This study focuses on the molecular mechanisms of sildenafil on CFTR recovery. We used ΔF508-CFTR/wt-CFTR expressing Xenopus laevis oocytes and human bronchial epithelial cell lines (CFBE41o(-)/16HBE14o(-)) to investigate the pathways of sildenafil action. Cells were treated with sildenafil and cAMP-mediated current (I(m)), conductance (G(m)), and capacitance (C(m)) were determined. Sildenafil increased I(m), G(m), and C(m) of wt-CFTR and functionally restored ΔF508-CFTR in oocytes. These effects were also seen in CFBE41o(-) and 16HBE14o(-) cells. Transepithelial measurements revealed that sildenafil mediated increase (wt-CFTR) and restoration (ΔF508-CFTR) of channel activity. cGMP pathway blocker inhibited the activity increase but not CFTR/ΔF508-CFTR exocytosis. From these data we conclude that sildenafil mediates potentiation of CFTR activity by a cGMP-dependent and initiates cGMP-independent functional insertion of CFTR/ΔF508-CFTR molecules into the apical membranes. Thus, sildenafil is a corrector and potentiator of CFTR/ΔF508-CFTR. Yet, the necessary high doses of the drug for CFTR recovery demonstrate that sildenafil might not be suited as a therapeutic drug for CF lung disease.  相似文献   

11.
Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane chloride channel is the most common cause of cystic fibrosis (CF). Though several maneuvers can rescue endoplasmic reticulum-retained ΔF508CFTR and promote its trafficking to the plasma membrane, rescued ΔF508CFTR remains susceptible to quality control mechanisms that lead to accelerated endocytosis, ubiquitination, and lysosomal degradation. To investigate the role of scaffold protein interactions in rescued ΔF508CFTR surface instability, the plasma membrane mobility of ΔF508CFTR was measured in live cells by quantum dot single particle tracking. Following rescue by low temperature, chemical correctors, thapsigargin, or overexpression of GRASP55, ΔF508CFTR diffusion was more rapid than that of wild-type CFTR because of reduced interactions with PDZ domain-containing scaffold proteins. Knock-down of the plasma membrane quality control proteins CHIP and Hsc70 partially restored ΔF508CFTR-scaffold association. Quantitative comparisons of CFTR cell surface diffusion and endocytosis kinetics suggested an association between reduced scaffold binding and CFTR internalization. Our surface diffusion measurements in live cells indicate defective scaffold interactions of rescued ΔF508CFTR at the cell surface, which may contribute to its defective peripheral processing.  相似文献   

12.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, ΔF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous ΔF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous ΔF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

13.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

14.
Deletion of Phe-508 (Delta F508) is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis. Delta F508-CFTR has defects in both channel gating and endoplasmic reticulum-to-plasma membrane processing. We identified six novel classes of high affinity potentiators of defective Delta F508-CFTR Cl- channel gating by screening 100,000 diverse small molecules. Compounds were added 15 min prior to assay of iodide uptake in epithelial cells co-expressing Delta F508-CFTR and a high sensitivity halide indicator (YFP-H148Q/I152L) in which Delta F508-CFTR was targeted to the plasma membrane by culture at 27 degrees C for 24 h. Thirty-two compounds with submicromolar activating potency were identified; most had tetrahydrobenzothiophene, benzofuran, pyramidinetrione, dihydropyridine, and anthraquinone core structures (360-480 daltons). Further screening of >1000 structural analogs revealed tetrahydrobenzothiophenes that activated DeltaF508-CFTR Cl- conductance reversibly with Kd < 100 nm. Single-cell voltage clamp analysis showed characteristic CFTR currents after Delta F508-CFTR activation. Activation required low concentrations of a cAMP agonist, thus mimicking the normal physiological response. A Bayesian computational model was developed using tetrahydrobenzothiophene structure-activity data, yielding insight into the physical character and structural features of active and inactive potentiators and successfully predicting the activity of structural analogs. Efficient potentiation of defective Delta F508-CFTR gating was also demonstrated in human bronchial epithelial cells from a Delta F508 cystic fibrosis subject after 27 degrees C temperature rescue. In conjunction with correctors of defective Delta F508-CFTR processing, small molecule potentiators of defective Delta F508-CFTR gating may be useful for therapy of cystic fibrosis caused by the Delta F508 mutation.  相似文献   

15.
The etiology of allergic bronchopulmonary aspergillosis (ABPA) is not well understood. A clinical phenotype resembling the pulmonary disease seen in cystic fibrosis (CF) patients can occur in some individuals with ABPA. Reports of familial occurrence of ABPA and increased incidence in CF patients suggest a possible genetic basis for the disease. To test this possibility, the entire coding region of the cystic fibrosis transmembrane regulator (CFTR) gene was analyzed in 11 individuals who met strict criteria for the diagnosis of ABPA and had normal sweat electrolytes (< or = 40 mmol/liter). One patient carried two CF mutations (deltaF508/R347H), and five were found to carry one CF mutation (four deltaF508; one R117H). The frequency of the deltaF508 mutation in patients with ABPA was significantly higher than in 53 Caucasian patients with chronic bronchitis (P < .0003) and the general population (P < .003). These results suggest that CFTR plays an etiologic role in a subset of ABPA patients.  相似文献   

16.
Cystic fibrosis (CF) is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). The most common mutation responsible for CF is the deletion of amino acid residue Phe508, with an average allelic frequency of 70%. We have isolated an anti-CFTR monoclonal antibody which specifically recognizes recombinant normal and delta Phe508-CFTR produced by a vaccinia virus expression system. Immunocytochemical analysis of L cells expressing either normal or delta Phe508-CFTR showed a marked difference in subcellular distribution. Normal CFTR had a distinct localization in the perinuclear area and was also associated with the plasma membrane. delta Phe508-CFTR essentially lacked the membrane-associated distribution and was present throughout the cytoplasm. This heterologous expression system thus provides a model system for studying the subcellular localization of different mutant forms of CFTR.  相似文献   

17.
18.
The intracellular localization of cystic fibrosis transmembrane conductance regulator (CFTR) in native tissues is a major issue in the study of mutation, processing, and trafficking effects in CFTR and in the evaluation of therapeutic strategies in cystic fibrosis (CF). This work evaluated the applicability of ten different antibodies (Abs) under various fixation techniques for CFTR localization in fresh-brushed nasal epithelial cells collected from CF patients homozygous for F508del and control individuals. In parallel, the same Ab panel was also tested on BHK cell lines overexpressing wild-type or F508del CFTR. The Abs MATG1061, 169, Lis1, MP-CT1, CC24-R, MAB25031, and MAB1660 gave the best detection of CFTR in the apical region (AR) of nasal tall columnar epithelial (TCE) cells. The labeling pattern of these Abs was consistent with the postulated processing defect of F508del CFTR because only a minority of CF TCE cells present CFTR in the AR. In contrast, M3A7, MM13-4, and L12B4 weakly react with the AR and stain almost exclusively a cis-Golgi-like structure in the majority of CF and non-CF airway cells. In BHK cells, all the Abs enabled distinction between wild-type CFTR localization in cell membrane from F508del CFTR, which in these cells is exclusively located in the endoplasmic reticulum.  相似文献   

19.
A single nucleotide change at codon 158 in exon 4 of the CFTR gene ABCC7 was detected in an asymptomatic individual who carried deltaF508 and had a family history of cystic fibrosis (CF). Further study, using linkage, revealed that S158N was coupled with deltaF508, both having been inherited from the same parent. The clinical implications of double mutations in the same allele are discussed.  相似文献   

20.
The activation of mutant forms of the cystic fibrosis transmembrane conductance regulator (CFTR), particularly the most frequent mutant allele (DeltaF508), is a potential strategy for the treatment of the disease cystic fibrosis (CF). Therefore, it is of great interest that curcumin, a component of the spice turmeric, is reported to restore function to this allele, both in heterologous expression systems and in DeltaF508 CF mice. Although other laboratories have not been able to confirm the initial observations, activating DeltaF508 CFTR could have such important therapeutic implications that a thorough investigation of the potential of curcumin is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号