首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant cells mount plenty of pattern-recognition receptors(PRRs) to detect the microbe-associated molecular patterns(MAMPs) from potential microbial pathogens.MAMPs are overrepresented by proteinaneous patterns,such as the flg22 peptide from bacterial flagellin. Identification of PRR receptor complex components by forward or reverse genetics can be time/labor-consuming, and be confounded by functional redundancies. Here, we present a strategy for identifying PRR complex components by engineering plants to inducibly secrete affinity-tagged proteinaneous MAMPs to the apoplast. The PRR protein complexes bound to self-secreted MAMPs are enriched through affinity purification and dissected by mass spectrometry. As a proof of principle, we could capture the flg22 receptor FLS2 and co-receptor BAK1 using Arabidopsis plants secreting FLAG-tagged flg22 under estradiolinduction. Moreover, we identified receptor-like kinases LIK1 and PEPR1/PEPR2 as potential components in the FLS2 receptor complex, which were further validated by protein–protein interaction assays and the reverse genetics approach. Our study showcases a simple way to biochemically identify endogenous PRR complex components without overexpressing the PRR or using chemical crosslinkers, and suggests a possible crosstalk between different immune receptors in plants. A modest dose of estradiol can also be applied to inducing enhanced immunity in engineered plants to both bacterial and fungal pathogens.  相似文献   

2.
Pathogens infect a host by suppressing defense responses induced upon recognition of microbe‐associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine‐rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs. We report that BAK1 depletion is linked to defense activation through the endogenous PROPEP peptides (Pep epitopes) and their LRR receptor kinases PEPR1/PEPR2, despite critical defects in MAMP signaling. In bak1‐knockout plants, PEPR elicitation results in extensive cell death and the prioritization of salicylate‐based defenses over jasmonate‐based defenses, in addition to elevated proligand and receptor accumulation. BAK1 disruption stimulates the release of PROPEP3, produced in response to Pep application and during pathogen challenge, and renders PEPRs necessary for basal resistance. These findings are biologically relevant, since specific BAK1 depletion coincides with PEPR‐dependent resistance to the fungal pathogen Colletotrichum higginsianum. Thus, the PEPR pathway ensures basal resistance when MAMP‐triggered defenses are compromised by BAK1 depletion.  相似文献   

3.
4.
5.
6.
There are two major modes for plant recognition of biotrophic microbial pathogens. In one mode, plant pattern recognition receptors (PRRs) recognize microbe associated molecular patterns (MAMPs, also called PAMPs), which are molecules such as flg22, a fragment of bacterial flagellin. In the other mode, the products of plant resistance (R) genes recognize pathogen effectors or host proteins modified by effectors. Salicylic acid (SA) -mediated defense responses are an important part of R gene-mediated resistance. It was not clear how these two signaling mechanisms interact with each other. Recently, we reported that treatment with flg22 triggered SA accumulation in Arabidopsis leaves. Disruptions of SA signaling components strongly affected MAMP-triggered gene expression responses. Flg22-triggered resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was partly dependent on SA signaling. Our results demonstrated the importance of SA signaling in flg22-triggered resistance and, at the same time, the importance of some other signaling mechanism(s) in this resistance. Here we discuss potential signaling components of flg22-triggered SA accumulation and other signaling mechanisms potentially contributing to flg22-triggered resistance to Pst DC3000.Key words: arabidopsis, expression profiling, MAMP, PAD4, PAMP, salicylic acid (SA), SID2  相似文献   

7.
While diverse microbe- or damage-associated molecular patterns (MAMPs/DAMPs) typically trigger a common set of intracellular signalling events, comparative analysis between the MAMPs flg22 and elf18 revealed MAMP-specific differences in Ca(2+) signalling, defence gene expression and MAMP-mediated growth arrest in Arabidopsis thaliana. Such MAMP-specific differences are, in part, controlled by BAK1, a kinase associated with several receptors. Whereas defence gene expression and growth inhibition mediated by flg22 were reduced in bak1 mutants, BAK1 had no or minor effects on the same responses elicited by elf18. As the residual Ca(2+) elevations induced by diverse MAMPs/DAMPs (flg22, elf18 and Pep1) were virtually identical in bak1 mutants, a differential BAK1-mediated signal amplification to attain MAMP/DAMP-specific Ca(2+) amplitudes in wild-type plants may be hypothesized. Furthermore, abrogation of reactive oxygen species (ROS) accumulation, either in the rbohD mutant or through inhibitor application, led to loss of a second Ca(2+) peak, demonstrating a feedback effect of ROS on Ca(2+) signalling. Conversely, mpk3 mutants showed a prolonged accumulation of ROS but this did not significantly impinge on the overall Ca(2+) response. Thus, fine-tuning of MAMP/DAMP responses involves interplay between diverse signalling elements functioning both up- or downstream of Ca(2+) signalling.  相似文献   

8.

Key message

Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified.

Abstract

Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.
  相似文献   

9.
10.
11.
Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidopsis of calcium influx and oxidative burst induced by non-saturating concentrations of bacterial MAMPs, used singly and in combination: flagellin peptide (flg22), elongation factor peptide (elf18), peptidoglycan (PGN) and component muropeptides, lipo-oligosaccharide (LOS) and core oligosaccharides. This revealed that some MAMPs have additive (e.g. flg22 with elf18) and even synergistic (flg22 and LOS) effects, whereas others mutually interfere (flg22 with OGA). OGA suppression of flg22-induced defences was not a result of the interference with the binding of flg22 to its receptor flagellin-sensitive 2 (FLS2). MAMPs induce different calcium influx signatures, but these are concentration dependent and unlikely to explain the differential induction of defence genes [pathogenesis-related gene 1 ( PR1 ), plant defensin gene 1.2 ( PDF1.2 ) and phenylalanine ammonia lyase gene 1 ( PAL1 )] by flg22, elf18 and OGA. The peptide MAMPs are potent elicitors at subnanomolar levels, whereas PGN and LOS at high concentrations induce low and late host responses. This difference might be a result of the restricted access by plant cell walls of MAMPs to their putative cellular receptors. flg22 is restricted by ionic effects, yet rapidly permeates a cell wall matrix, whereas LOS, which forms supramolecular aggregates, is severely constrained, presumably by molecular sieving. Thus, MAMPs can interact with each other, whether directly or indirectly, and with the host wall matrix. These phenomena, which have not been considered in detail previously, are likely to influence the speed, magnitude, versatility and composition of plant defences.  相似文献   

12.
Root cap not only protects root meristem, but also detects and transduces the signals of environmental changes to affect root development. The symplastic communication is an important way for plants to transduce signals to coordinate the development and physiology in response to the changing enviroments. However, it is unclear how the symplastic communication between root cap cells affects root growth. Here we exploit an inducible system to specifically block the symplastic communication in the root cap. Transient blockage of plasmodesmata (PD) in differentiated collumella cells severely impairs the root development in Arabidopsis, in particular in the stem cell niche and the proximal meristem. The neighboring stem cell niche is the region that is most sensitive to the disrupted symplastic communication and responds rapidly via the alteration of auxin distribution. In the later stage, the cell division in proximal meristem is inhibited, presumably due to the reduced auxin level in the root cap. Our results reveal the essential role of the differentiated collumella cells in the root cap mediated signaling system that directs root development.  相似文献   

13.
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe‐associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN‐SENSING 2 (FLS2) and EF‐Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode‐impaled mesophyll cells and root hairs of Col‐0 Arabidopsis plants revealed rapid, dose‐dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion‐selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species‐independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2‐associated receptor‐like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1‐dependent, calcium‐associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway.  相似文献   

14.
Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells. However, the factors connecting cytokinin, auxin, SHY2 and PLT1/2 are largely unknown. In a recent study, we have shown that the DA1-related protein 2 (DAR2) acts downstream of cytokinin and SHY2 but upstream of PLT1/2 to affect root meristem size. Here, we discuss the possible molecular mechanisms by which Arabidopsis DAR2 controls root meristem size.  相似文献   

15.
Plant immune responses triggered upon recognition of microbe‐associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col‐0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No‐0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane‐attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col‐0, while depletion of isochorismate synthase 1 repressed flg22‐inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col‐0 responded to flg22 treatment with an RBOHD‐dependent oxidative burst, but this response was dispensable for the nsl1‐dependent cell death. Surprisingly, loss‐of‐function mutations in PEN2, involved in the metabolism of tryptophan (Trp)‐derived indole glucosinolates, suppressed the flg22‐induced and nsl1‐dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp‐derived secondary metabolite biosynthesis, whereas the nsl1‐dependent hyperaccumulation of PEN2‐dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP‐triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp‐derived secondary metabolite‐mediated activation of the SA pathway.  相似文献   

16.
17.
18.
Signaling initiation by receptor-like kinases (RLKs) at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR) RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP) receptor FLS2 builds signaling complexes with BAK1 (SERK3). We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope) ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs) of the significantly different receptors FLS2, EFR (MAMP receptors), PEPR1 (damage-associated molecular pattern (DAMP) receptor), and BRI1 (hormone receptor). Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants expressing FLS2 with the Q530A+Q627A double mutation were impaired both in detectable interaction with BAK1 and in FLS2-mediated responses, lending overall support to current models of FLS2 structure and function.  相似文献   

19.
The parasitic plant Striga (Striga hermonthica) invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium results from the prehaustorium, which is derived directly from the differentiation of the Striga radicle. The molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental programs that regulate terminal prehaustorium formation in S. hermonthica at cellular resolution. We showed that shortly after germination, cells in the root meristem undergo multiplanar divisions. During growth, the meristematic activity declines and associates with reduced expression of the stem cell regulator PLETHORA1 and the cell cycle genes CYCLINB1 and HISTONE H4. We also observed a basal localization of the PIN-FORMED (PIN) proteins and a decrease in auxin levels in the meristem. Using the structural layout of the root meristem and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots to form the invasive prehaustoria.

The parasitic plant Striga hermonthica forms its invasive organ, the prehaustorium, by inducing differentiation of the radicle by arresting cell division.  相似文献   

20.
Light is a key environmental cue controlling plant development, which involves meristemic activation by cell proliferation and differentiation. Here, we identify one gene, AtSKIP, associated with cell cycle-regulated root and leaf growth processes in Arabidopsis. The spatial pattern of β-glucuronidase (GUS) activity indicated that AtSKIP is expressed in the leaf primodia, root meristem region and root vascular system, and can be activated by light. Ectopic expression of AtSKIP resulted in enhanced leaf development but suppressed root elongation in Arabidopsis, whereas AtSKIPDD seedlings displayed retarded leaf growth and normal root growth. Moreover, AtSKIP cells displayed enhanced sensitivity to a cytokinin in a callus induction assay, further demonstrated that AtSKIP expression altered endogenous cell cycle-regulated signaling in plants. Together, these data indicate that AtSKIP participates in cell cycle-mediated growth of leaf and root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号