首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although the study of red blood cell (RBC) aggregation continues to be of basic science and clinical interest, aggregation standards for calibration do not exist, and most aggregation studies report data in terms of arbitrary units: quantitative comparisons between studies are thus essentially precluded. However, use of low shear viscometry plus the Casson equation provides a yield shear stress that has defined units and is known to reflect RBC aggregation. Employing human RBC-plasma suspensions exhibiting a wide range of aggregation, the present study examined relations between yield shear stress values and aggregation indices obtained using the Myrenne aggregometer: the latter approach uses a light-transmission technique and provides an "M" index at stasis and an "M1" at very low shear. Our results for normal controls and for angina patients without coronary artery disease indicate highly significant correlations (p<0.001) between the yield stress and both M and M1. Thus, within the range of aggregation studied, these findings lend support to the rheological validity of the Myrenne approach; extension of our findings to intensely aggregating RBC suspensions may require additional validation studies.  相似文献   

2.
M Peng  W Lu  E P Kirby 《Biochemistry》1991,30(49):11529-11536
A new protein, called alboaggregin-B (AL-B), has been isolated from Trimeresurus albolabris venom by ion-exchange chromatography. It agglutinated platelets without the need for Ca2+ or any other cofactor. The purified protein showed an apparent molecular mass on SDS-PAGE and gel filtration of about 23 kDa under nonreducing conditions. Ristocetin did not alter the binding of AL-B to platelets or affect AL-B-induced platelet agglutination. Agglutinating activity was not dependent on either proteolytic or lectin-like activity in AL-B. Binding analysis showed that AL-B bound to platelets with high affinity (Kd = 13.6 +/- 9.3 nM) at approximately 30,800 +/- 14,300 binding sites per platelet. AL-B inhibited the binding of labeled bovine von Willebrand factor (vWF) to platelets. Monoclonal antibodies against the 45-kDa N-terminal domain of platelet glycoprotein Ib inhibited the binding both of AL-B and of bovine vWF to platelets, and also inhibited platelet agglutination induced by AL-B and bovine vWF. Specific removal of the N-terminal domain of GPIb by treatment of the platelets with elastase or Serratia marcescens protease reduced the binding of labeled AL-B and bovine vWF to platelets and blocked platelet agglutination caused by both agonists. Monoclonal antibodies to glycoprotein IIb/IIIa, to bovine vWF, and to bovine serum albumin did not show any effect on the binding of AL-B to platelets. Our results indicate that the binding domain for AL-B on platelet GPIb is close to or identical with the one for vWF. This new protein may be a very useful tool for studying the interaction between platelets and vWF.  相似文献   

3.
Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia-induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation?was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production.  相似文献   

4.
Tumor cell induced platelet aggregation was shown to be inhibited in a dose dependent manner by preincubation of human platelets with antibodies to platelet glycoprotein Ib and the IIb/IIIa complex. Combination of antibody to Ib and antibody to the IIb/IIIa complex at concentrations which produced half maximal inhibition of platelet aggregation alone caused complete inhibition of tumor cell induced platelet aggregation. Antibodies to platelet glycoproteins Ib and the IIb/IIIa complex also inhibited platelet synthesis of thromboxane A2, but not synthesis of 12-hydroxyeicosatrienoic acid. Inhibition of tumor cell induced platelet aggregation with antibodies against platelet glycoproteins suggests a role for these glycoproteins in tumor cell-platelet interactions and possibly platelet facilitated tumor cell metastasis.  相似文献   

5.
6.
Endothelial-derived proteoglycans are important regulators of the coagulation-pathway in vivo and our primary objective of this study was to determine whether chronic shear stress affected the synthesis, release, and activity of proteoglycans from bovine aortic endothelial cells (BAEC). BAEC were cultured under shear and proteoglycans were purified from BAEC conditioned media and analyzed using both anionic exchange and size exclusion chromatography. The overall amount of proteoglycans produced per cell was significantly greater for the high shear-treated samples compared to the low shear-treated samples indicating that the shear magnitude did impact cell responsiveness. While overall size and composition of the proteoglycans and glycosaminoglycan (GAG) side chains were not altered by shear, the relative proportion of the high and low molecular weight species was inversely related to shear and differed significantly from that found under static tissue culture conditions. Moreover, a unique proteoglycan peak was identified from low shear stress (5 +/- 2 dynes/cm(2)) conditioned media when compared to high shear conditions (23 +/- 8 dynes/cm(2)) via anionic exchange chromatography, suggesting that subtle changes in the GAG structures may impact activity of these molecules. In order to characterize whether these changes impacted proteoglycan function, we studied the effects of shear specific proteoglycans on the inhibition of thrombin-induced human platelet aggregation as well as on platelet-fibrin clot dynamics. Proteoglycans from high shear-treated samples were less effective inhibitors of both platelet aggregation and blood coagulation inhibition than proteoglycans from low shear-treated samples and both were less effective than proteoglycans isolated from static tissue culture samples. However, due to changes in the overall proteoglycan synthesis and release rate, the high and low shear-treated sample had essentially identical effects on these activities, suggesting that the cells were able to compensate for stress-induced proteoglycan changes. Our data suggests that shear stress, by altering proteoglycan synthesis and fine structure, may play a role in maintaining vascular hemodynamics and hemostasis.  相似文献   

7.
Lounes KC  Ping L  Gorkun OV  Lord ST 《Biochemistry》2002,41(16):5291-5299
The C-terminal domain of the fibrinogen gamma-chain includes multiple functional sites that have been defined in high-resolution structures and biochemical assays. Calcium binds to this domain through the side chains of gammaD318 and gammaD320 and the backbone carbonyls of gammaF322 and gammaG324. We have examined variant fibrinogens with alanine at position gamma318 and/or gamma320 and found that calcium binding, fibrin polymerization, and fibrinogen-mediated platelet aggregation, but not FXIIIa-catalyzed cross-linking, were abnormal. When measured by turbidity, thrombin-catalyzed polymerization was severely reduced, and batroxobin-catalyzed polymerization was completely obliterated. Moreover, thrombin-catalyzed polymerization was abolished by the peptide GHRP, which binds to the polymerization site in the beta-chain but does not inhibit polymerization of normal fibrinogen. ADP-induced platelet aggregation was also severely impaired. In contrast, as measured by SDS-PAGE, FXIIIa introduced cross-links between gamma-chains for all three variants, as expected if the gamma-chain C-terminal sites were normal. In addition, binding of the monoclonal antibody 4A5, which recognizes the C-terminal residues, was not different from normal. These data suggest two specific conclusions: (1) a site in the gamma-module other than the C-terminus is critical for platelet aggregation and (2) "B-b" interactions have a role in protofibril formation.  相似文献   

8.
The existence of a new factor (AF) in mice acting synergistically with known proaggregatory stimuli has been suggested by the present study in the plasma of mice challenged with intravenous collagen and adrenaline. Indomethacin, nordihydroguaretic acid (NDGA), BW 755C, phentolamine, cimetidine and ketanserin could not block the response of AF. Activity of the factor remained unaltered after treatment with pancreatic phospholipase A2, collagenase, CP/CPK, trypsin and heparin. Fractionation of the plasma indicated the presence of AF in acetone precipitate. Activity was destroyed by pronase and it was lost after dialysis and charcoal treatment. Existence of such a factor which is heat resistant, is of low molecular weight and is proaggregatory in nature in the thrombotic mice plasma and which requires calcium ions for the expression of its activity, has not been reported earlier.  相似文献   

9.
Bauninia forficata is trivially known as cow paw, and popularly used in Brazil for treatment of diabetes mellitus. Denominated baupain a cysteine proteinase was purified from B. forficata leaves. In this study, we investigated the baupain effect on aggregation of isolated human platelets in vitro and the results show that baupain hinders thrombin - but not ADP- and collagen- induced platelet aggregation. With synthetic quenched-fluorescent peptides, the kinetics of the cleavage site of human proteinase-activated receptor 1 / 2 / 3 and 4 [PAR-1 / 2 / 3 and 4] by baupain was determined. In conclusion, similar to bromelain and papain, baupain hinders human platelets aggregation, probably through an unspecific cleavage in the Phe-Leu bond of PAR1.  相似文献   

10.
Platelet transport theory is based on convection diffusion and describes adequately the influence of wall shear rate, platelet concentration and axial (down stream) position. Until now, the influence of the predominant factors affecting platelet adherence, the hematocrit and the red cell size, was not included in this theory. Their role remained hidden in the platelet diffusivity (Dw), which was assumed to be related to the shear rate (gamma) expressed in s-1 by a power law function Dw = m gamma n, in which m and n were thought to be constants. We have determined platelet diffusivity directly from platelet adherence to subendothelium as a function of axial distance in an in vitro perfusion system. Our results indicate that m is a constant with a value of (1.05 +/- 0.05) 10(-9) cm2 s-1 and that n is a function of the hematocrit (h) which is best approximated by a quadratic equation n = 0.297 + 1.29 h - 0.90 h2. The effect of red cell size was introduced by correcting the hematocrit containing factors in this quadratic equation for the square of the red cell diameter. This correction was made on the basis of theoretical considerations. The theoretically derived platelet adherence correlated closely with the previous experimental data regarding the effect of red cell size in which we found that the hemodynamic effect of red cells on platelet adherence decreases with decreasing red cell diameter.  相似文献   

11.
Neither the influence of high shear rates nor the impact of cavitation on protein aggregation is fully understood. The effect of cavitation bubble collapse‐derived hydroxyl radicals on the aggregation behavior of human serum albumin (HSA) was investigated. Radicals were generated by pumping through a micro‐orifice, ultra‐sonication, or chemically by Fenton's reaction. The amount of radicals produced by the two mechanical methods (0.12 and 11.25 nmol/(L min)) was not enough to change the protein integrity. In contrast, Fenton's reaction resulted in 382 nmol/(L min) of radicals, inducing protein aggregation. However, the micro‐orifice promoted the formation of soluble dimeric HSA aggregates. A validated computational fluid dynamic model of the orifice revealed a maximum and average shear rate on the order of 108 s?1 and 1.2 × 106 s?1, respectively. Although these values are among the highest ever reported in the literature, dimer formation did not occur when we used the same flow rate but suppressed cavitation. Therefore, aggregation is most likely caused by the increased surface area due to cavitation‐mediated bubble growth, not by hydroxyl radical release or shear stress as often reported.  相似文献   

12.
We have studied the inhibition of ADP-induced platelet aggregation in sheep platelet-rich plasma by water-soluble polymers bound to the prostaglandin analogue 5-(6-carboxyhexyl)-1-(3-cyclohexyl-3-hydroxypropyl)hydantoin ('BW 245' C, (I). The use of unambiguous modes of binding this antiplatelet drug to polymers has enabled us to study some structural features which influence inhibitory activity. Evidence is adduced which indicates that the chemical mechanisms responsible for inhibition by free and coupled BW 245 are similar. The most important observation is a remarkable synergism demonstrated by the greatly enhanced activity of a mixture of a polymer coupled to BW 245 with the uncoupled parent polymer. In some cases (e.g., with high-molecular-weight dextran) the effect may reach (and possibly exceed) two orders of magnitude. The influence of polymer molecular weights and 'cross-polymer' effects have both been examined. A mechanism has been proposed to account for these phenomena, involving adsorption of the added (inactive) polymer on to the platelet membranes, facilitating interaction of the polymer-bound drug with receptors, made more accessible by alteration to the surface geometry. This mechanism is based on physical processes, unlike other explanations of synergistic behaviour, e.g., that of prostaglandins used in conjunction with non-polymeric drugs. The observed dependences of synergistic effects upon polymer molecular weight and type and distribution of drug molecules along chains are typical 'polymer' phenomena which are all consistent with the proposed mechanism.  相似文献   

13.
14.
E L Kalomiris  B S Coller 《Biochemistry》1985,24(20):5430-5436
We used two membrane-permeable fluorescent reagents, monobromobimane and N-[[5-(dimethylamino)-1-naphthalenyl]sulfonyl]aziridine (N-dansylaziridine), and one membrane-impermeable fluorescent probe, monobromo(trimethylammonio)bimane, all three of which react selectively with protein thiols, to assess the presence of reactive sulfhydryls in the platelet glycoprotein Ib (GPIb) molecule and establish the topology of any GPIb-reactive thiols in the platelet membrane. Intact platelets were reacted with 1-10 mM monobromobimane or monobromo(trimethylammonio)bimane or 50-100 microM N-dansylaziridine for 30-60 min at 37 degree C. The platelets were then washed, solubilized in 1% Triton X-100, and analyzed by nonreduced-reduced polyacrylamide gel electrophoresis either directly or indirectly after immunopurification of GPIb. Monobromobimane and N-dansylaziridine labeled GPIb beta but not GPIb alpha in intact platelets. This labeling could be inhibited by pretreating the platelets with either N-ethylmalemide or p-(chloromercuri)benzenesulfonic acid, confirming the specificity of these probes for thiol groups. Monobromo(trimethylammonio)bimane, the membrane-impermeable reagent, did not label GPIb beta in intact platelets. However, it did label GPIb beta in sonicated platelets, indicating that the thiol group of GPIb beta occupies an intracellular location. Since the carbohydrate moiety of GPIb beta can be labeled from the outside of intact platelets with membrane-impermeable reagents, we conclude that GPIb beta has a transmembrane orientation.  相似文献   

15.
In part 1, we reported that human (H) platelets, activated with high concentrations (10 microM) of adenosine diphosphate, aggregate under Brownian diffusion (nonstirred, platelet-rich plasma) with an apparent efficiency of collision (alpha B) approximately 4 times and 8 times larger than observed, respectively, for canine (C) and rabbit (R) platelets. Further evaluations of parallel inhibition of alpha B and shape change suggested a central role for platelet pseudopods in mediating the long-range interactions associated with the elevated alpha B values. We found that greater than 90% of all platelet contacts in the doublets and triplets formed were via at least one pseudopod. We therefore compared pseudopod number and length per platelet generated by approximately 30 s post ADP activation in nonstirred PRP from human, canine, and rabbit donors, using phase-contrast, video-enhanced microscopy of fixed platelets. Theoretical calculations assessing the effects of pseudopod length and number on the collision frequency enhanced by an increased radius of a collision sphere supported the experimental observations that approximately 3 or 4 pseudopods per human or canine platelet, and approximately 5 or 6 pseudopods per rabbit platelet yield optimal alpha B values, with the average pseudopod length: approximately 3:2:1 for H/C/R, paralleling the alpha B differences. After correcting for effects of pseudopods and platelet size on platelet diffusion and sedimentation, it still appeared that the small number of long pseudopods formed on human platelets could largely explain the unusually large alpha B values. The quantitative discrepancies between theory and experiment do not appear related to time-dependent refractoriness within the less than 60 s of observation, but may be related to biochemical differences in dynamics and surface density of adhesive (sticky sites) present on the pseudopod surface.  相似文献   

16.
Gao Y  Ge H  Chen H  Li H  Liu Y  Chen L  Li X  Liu J  Niu L  Teng M 《Proteins》2012,80(6):1707-1711
Agkisacucetin is a snake C‐type lectin isolated from the venom of Agkistrodon acutus (A. acutus). It binds specifically to the platelet glycoprotein (GP) Ib and prevents the von Willebrand factor (VWF) accessing it. We determined the crystal structure of agkisacucetin to 1.9Å resolution. The structure of agkisacucetin has an (αβ) fold similar to another GPIb‐binding protein, flavocetin‐A, but lacks the C‐terminal cysteine in the β‐subunit, does not form (βα)4 tetramers, and does not cluster GPIbs, like flavocetin‐A. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
We have characterized a monoclonal antibody named D33C, specific for platelet glycoprotein (GP) IIb, which induces fibrinogen binding and platelet aggregation. D33C Fab fragments interact with an average of 44,000 +/- 20,000 sites on resting platelet with a Kd value of 0.8 microM. This value decreased to 0.17 microM in the presence of 1 mM EDTA suggesting that Ca2+ chelation increases the antibody affinity. Purified IgGs and Fab fragments exhibit a similar potency and induce binding of fibrinogen and aggregation at levels comparable to those obtained with ADP. D33C-induced platelet aggregation, however, was not inhibited by 1 microM PGE1 and was not associated with a significant [14C]serotonin release, suggesting differences with ADP in the mechanism of activation. Among a large series of synthetic peptides corresponding to potential antigenic sequences within the structure of GPIIb, one peptide with the sequence DIDDNGYPDLIV was found to inhibit D33C activity. This peptide corresponds to a putative calcium-binding site whose sequence is highly homologous to similar sequences present in the alpha subunits of the fibronectin and the vitronectin receptors. Despite this homology, D33C interacts only with platelet GPIIb suggesting that the identified epitope may be differently exposed at the surface of the cells. This antibody may prove to be a valuable tool to study the induction reaction on recombinant GPIIbIIIa expressed in cells that lack the appropriate signal transduction reactions.  相似文献   

18.
The binding of von Willebrand factor (vWF) to the platelet receptor glycoprotein (GP) Ib-IX complex is a key event in hemostasis and may participate in the development of thrombotic vascular occlusion. We present here evidence that residues Ser251-Tyr279 in the GP Ib alpha-chain participate in this function. Initial studies suggested that the modality of vWF interaction with GP Ib depended on the conditions used for induction of binding, either in the presence of ristocetin, or botrocetin, or with asialo-vWF. In fact, only the 45-kDa amino-terminal fragment of GP Ib alpha inhibited the vWF-GP Ib interaction under all conditions tested, while the 84-kDa macroglycopeptide was significantly effective only in the presence of ristocetin. Moreover, the 45-kDa fragment with reduced disulfide bonds still inhibited ristocetin-induced binding but had no effect, at the concentrations tested, on botrocetin-mediated or direct asialo-vWF binding. In order to localize in more detail the functional site, the entire sequence of the 45-kDa fragment was reproduced in 27 overlapping synthetic peptides that were then used in inhibition of binding assays. This led to the identification of a linear GP Ib alpha sequence (residues Ser251-Tyr279) that effectively inhibited platelet interaction with vWF mediated by ristocetin and, at higher concentration, also by botrocetin. A shorter peptide overlapping with the longer one (residues Gly271-Glu285) was the second most active inhibitory species. This region of the molecule contains several residues with a high surface probability index, as expected for a site involved in ligand binding. Thus, while native conformation of GP Ib alpha appears to be important for optimal interaction with vWF, the results obtained with short synthetic peptides may help in defining the amino acid residues participating in this essential function.  相似文献   

19.
Nitro-fatty acids represent endogenously occurring products of oxidant-induced nitration reactions. We have previously synthesized a mixture of four isomers of nitroarachidonic acid, a novel anti-inflammatory signaling mediator. In this study, we synthesized and chemically and biologically characterized for the first time an esterified nitroalkene derived from the nitration of methylarachidonate (AAMet): 6-methylnitroarachidonate (6-AAMetNO(2)). Synthesis was performed by reacting AAMet with sodium nitrite under acidic conditions. Analysis by mass spectrometry (positive-ion ESI-MS) showed an [M+H](+) ion of m/z 364, characteristic of AAMetNO(2). Fragmentation of this ion yielded a daughter ion at m/z 317, corresponding to the neutral loss of the nitro group ([M+H-HNO(2)](+)). Furthermore, IR signal at 1378 cm(-1) and NMR data confirmed the structure of a 6-nitro-positional isomer. This novel esterified nitroalkene was capable of promoting vascular protective actions including: (a) the induction of vasorelaxation via endothelium-independent mechanisms, associated with an increase in smooth muscle cell cGMP levels, and (b) a potent dose-dependent inhibition of human platelet aggregation. We postulate that 6-AAMetNO(2) could be a potential drug for the prevention of vascular and inflammatory diseases, and the presence of the methyl group may increase its pharmacological potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号