首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells.  相似文献   

2.
The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these “BH3 mimetics” in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins.  相似文献   

3.
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.  相似文献   

4.
Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic “BH3-only” BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast.In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase’s downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.  相似文献   

5.
Differentiation of hematopoietic cells from multipotential progenitors is regulated by multiple growth factors and cytokines. A prominent feature of these soluble factors is promotion of cell survival, in part mediated by expression of either of the anti-apoptotic proteins, BCL-2 and BCL-XL. The complex expression pattern of these frequently redundant survival factors during hematopoiesis may indicate a role in lineage determination. To investigate the latter possibility, we analyzed factor-dependent cell-Patersen (FDCP)-Mix multipotent progenitor cells in which we stably expressed BCL-2 or BCL-XL. Each factor maintained complete survival of interleukin-3 (IL-3)-deprived FDCP-Mix cells but, unexpectedly, directed FDCP-Mix cells along restricted and divergent differentiation pathways. Thus, IL-3-deprived FDCP-Mix BCL-2 cells differentiated exclusively to granulocytes and monocytes/macrophages, whereas FDCP-Mix BCL-XL cells became erythroid. FDCP-Mix BCL-2 cells grown in IL-3 were distinguished from FDCP-Mix and FDCP-Mix BCL-XL cells by a striking reduction in cellular levels of Raf-1 protein. Replacement of the BCL-2 BH4 domain with the related BCL-XL BH4 sequence resulted in a switch of FDCP-Mix BCL-2 cells to erythroid fate accompanied by persistence of Raf-1 protein expression. Moreover, enforced expression of Raf-1 redirected FDCP-Mix BCL-2 cells to an erythroid fate, and prohibited generation of myeloid cells. These results identify novel roles for BCL-2 and BCL-XL in cell fate decisions beyond cell survival. These effects are associated with differential regulation of Raf-1 expression, perhaps involving the previously identified interaction between BCL-2-BH4 and the catalytic domain of Raf-1.  相似文献   

6.
Development of resistance to chemo- and radiotherapy in patients suffering from advanced cervical cancer narrows the therapeutic window for conventional therapies. Previously we reported that a combination of the selective BCL-2 family inhibitors ABT-263 and A-1210477 decreased cell proliferation in C33A, SiHa and CaSki human cervical cancer cell lines. As ABT-263 binds to both BCL-2 and BCL-XL with high affinity, it was unclear whether the synergism of the drug combination was driven either by singly inhibiting BCL-2 or BCL-XL, or inhibition of both. In this present study, we used the BCL-2 selective inhibitor ABT-199 and the BCL-XL selective inhibitor A1331852 to resolve the individual antitumor activities of ABT-263 into BCL-2 and BCL-XL dependent mechanisms. A-1210477 was substituted for the orally bioavailable S63845. Four cervical cancer cell lines were treated with the selective BCL-2 family inhibitors ABT-199, A1331852 and S63845 alone and in combination using 2-dimensional (2D) and 3-dimensional (3D) cell culture models. The SiHa, C33A and CaSki cell lines were resistant to single agent treatment of all three drugs, suggesting that none of the BCL-2 family of proteins mediate survival of the cells in isolation. HeLa cells were resistant to single agent treatment of ABT-199 and A1331852 but were sensitive to S63845 indicating that they depend on MCL-1 for survival. Co-inhibition of BCL-2 and MCL-1 with ABT-199 and S63845, inhibited cell proliferation of all cancer cell lines, except SiHa. However, the effect of the combination was not as pronounced as combination of A1331852 and S63845. Co-inhibition of BCL-XL and MCL-1 with A1331852 and S63845 significantly inhibited cell proliferation of all four cell lines. Similar data were obtained with 3-dimensional spheroid cell culture models generated from two cervical cancer cell lines in vitro. Treatment with a combination of A1331852 and S63845 resulted in inhibition of growth and invasion of the 3D spheroids. Collectively, our data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or BCL-2 may be potentially useful as treatment strategies for the management of cervical cancer.  相似文献   

7.
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state “addicted” to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.Subject terms: Cancer metabolism, Lipid signalling  相似文献   

8.
BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day “short-term” ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day “long-term” BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.Subject terms: Bone marrow transplantation, Immune cell death  相似文献   

9.
High levels of the anti-apoptotic BCL-2 family member MCL-1 are frequently found in breast cancer and, appropriately, BH3-mimetic drugs that specifically target MCL-1’s function in apoptosis are in development as anti-cancer therapy. MCL-1 also has reported non-canonical roles that may be relevant in its tumour-promoting effect. Here we investigate the role of MCL-1 in clinically relevant breast cancer models and address whether the canonical role of MCL-1 in apoptosis, which can be targeted using BH3-mimetic drugs, is the major function for MCL-1 in breast cancer. We show that MCL-1 is essential in established tumours with genetic deletion inducing tumour regression and inhibition with the MCL-1-specific BH3-mimetic drug S63845 significantly impeding tumour growth. Importantly, we found that the anti-tumour functions achieved by MCL-1 deletion or inhibition were completely dependent on pro-apoptotic BAX/BAK. Interestingly, we find that MCL-1 is also critical for stem cell activity in human breast cancer cells and high MCL1 expression correlates with stemness markers in tumours. This strongly supports the idea that the key function of MCL-1 in breast cancer is through its anti-apoptotic function. This has important implications for the future use of MCL-1-specific BH3-mimetic drugs in breast cancer treatment.Subject terms: Cancer models, Cell biology, Genetics  相似文献   

10.
Human BFK (BCL-2 family kin) is a novel pro-apoptotic BCL-2 family member specifically expressed in the gastrointestinal tract. BFK has the characteristic BH3 domain, which was shown to be essential for the apoptosis-inducing activity of pro-apoptotic BCL-2 family members. When overexpressed, BFK interacts with BCL-XL and BCL-W but not BCL-2 or BAD in co-immunoprecipitations studies. We find that BFK exhibits striking similarity to BID in the way it is activated through cleavage during apoptosis. The endogenous and cleaved versions of BFK are readily recognized by the rabbit and mouse sera raised against human BFK. An ideal caspase 3 or 7 target sequence, DEVD (amino acids 38–41), is evident N-terminal to the BH3 domain. A recombinant version of the protein containing all residues downstream of the putative caspase cleavage site induces apoptosis in human colon cancer cells, HCT116, and in wild-type mouse embryonic fibroblasts (MEFs), which can be reversed by co-expression of BCL-XL or BCL-W. BFK becomes activated through caspase-dependent cleavage during DNA damage-induced apoptosis. The cleaved form of the protein is dependent on the presence of BAX or BAK for its ability to induce apoptosis, since BAX–/–-BAK–/– double-knockout MEFs are completely resistant to BFK-induced apoptosis.  相似文献   

11.
BH3 profiling measures the propensity of transformed cells to undergo intrinsic apoptosis and is determined by exposing cells to BH3-mimicking peptides. We hypothesized that basal levels of prosurvival BCL-2 family proteins may modulate the predictive power of BH3 profiling and termed it mitochondrial profiling. We investigated the correlation between cell sensitivity to apoptogenic agents and mitochondrial profiling, using a panel of acute myeloid leukemias induced to undergo apoptosis by exposure to cytarabine, the BH3 mimetic ABT-199, the MDM2 inhibitor Nutlin-3a, or the CRM1 inhibitor KPT-330. We found that the apoptogenic efficacies of ABT-199 and cytarabine correlated well with BH3 profiling reflecting BCL2, but not BCL-XL or MCL-1 dependence. Baseline BCL-2 protein expression analysis increased the ability of BH3 profiling to predict resistance mediated by MCL-1. By utilizing engineered cells with overexpression or knockdown of BCL-2 family proteins, Ara-C was found to be independent, while ABT-199 was dependent on BCL-XL. BCL-2 and BCL-XL overexpression mediated resistance to KPT-330 which was not reflected in the BH3 profiling assay, or in baseline BCL-2 protein levels. In conclusion, mitochondrial profiling, the combination of BH3 profiling and prosurvival BCL-2 family protein analysis, represents an improved approach to predict efficacy of diverse agents in AML and may have utility in the design of more effective drug combinations.  相似文献   

12.
Colorectal cancer (CRC) is one of the most common and deadliest forms of cancer. Myeloid Cell Leukemia 1 (MCL1), a pro-survival member of the Bcl-2 protein family is associated with chemo-resistance in CRC. The ability of MCL1 to inhibit apoptosis by binding to the BH3 domains of pro-apoptotic Bcl-2 family members is a well-studied means by which this protein confers resistance to multiple anti-cancer therapies. We found that specific DNA damaging chemotherapies promote nuclear MCL1 translocation in CRC models. In p53null CRC, this process is associated with resistance to chemotherapeutic agents, the mechanism of which is distinct from the classical mitochondrial protection. We previously reported that MCL1 has a noncanonical chemoresistance capability, which requires a novel loop domain that is distinct from the BH3-binding domain associated with anti-apoptotic function. Herein we disclose that upon treatment with specific DNA-damaging chemotherapy, this loop domain binds directly to alpha-enolase which in turn binds to calmodulin; we further show these protein−protein interactions are critical in MCL1’s nuclear import and chemoresistance. We additionally observed that in chemotherapy-treated p53−/− CRC models, MCL1 nuclear translocation confers sensitivity to Bcl-xL inhibitors, which has significant translational relevance given the co-expression of these proteins in CRC patient samples. Together these findings indicate that chemotherapy-induced MCL1 translocation represents a novel resistance mechanism in CRC, while also exposing an inherent and targetable Bcl-xL co-dependency in these cancers. The combination of chemotherapy and Bcl-xL inhibitors may thus represent a rational means of treating p53−/− CRC via exploitation of this unique MCL1-based chemoresistance mechanism.Subject terms: Targeted therapies, Senescence  相似文献   

13.
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small‐molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL‐2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3‐ or SMAC‐mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3‐mimetics indicate that the antiapoptotic BCL‐2 protein MCL‐1 and its antagonist NOXA are particularly important regulators of BCL‐2 family signaling, while SMAC‐mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF‐inhibitors, which have already revolutionized melanoma treatment, are a clear priority.  相似文献   

14.
BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX's 'on switch'. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis.  相似文献   

15.
Survival and proliferation of cancer cells are often associated with hyperactivity of the serine/threonine kinase, Akt. Herein, we show that prosurvival activity of Akt can be converted into prodeath activity by embedding an Akt recognition sequence in the apoptogenic BH3 domain of human BIM. The recognition sequence was created by introducing two mutations, I155R and E158S, into the core region of the BIM BH3 domain. Although a 21-mer BIM BH3 peptide containing these two mutations bound weakly to BCL-XL and BCL-2, this peptide with phosphorylation of Ser158 bound to these proteins with a dissociation constant of <10 nM. The crystal structure of the phosphorylated peptide bound to BCL-XL revealed that the phospho-Ser158 makes favorable interactions with two BCL-XL residues, which cannot be formed with unphosphorylated Ser158. Remarkably, the designed peptide showed a cytotoxic effect on PTEN-null PC3 tumor cells whose Akt activity is aberrantly high. The cell-killing activity disappeared when the cellular Akt activity was lowered by ectopic PTEN expression. Thus, these results lay a foundation for developing a peptide or protein agent that is dormant in normal cells but is transformed into a potent apoptogenic molecule upon phosphorylation by hyperactivity of Akt in cancer cells.The interplay between the BCL-2 family proteins regulates mitochondrion-mediated apoptotic cell death.1, 2 The BCL-2 family proteins are characterized by having at least one BCL-2 homology (BH) domain, and they are classified into three distinct subgroups based on their functional and structural features. One subgroup consists of BAX and BAK, which contain the BH1-BH4 domains and mediate apoptosis by increasing the permeability of the mitochondrial outer membrane (MOM) and thus leading to the release of the apoptogenic factors, such as cytochrome c and Smac/Diablo.3, 4, 5, 6 Another subgroup is composed of antiapoptotic proteins, BCL-2, BCL-XL, BCl-w, MCL-1, A1 and BCL-B, which contain the BH1-BH4 domains that are arranged to form an extended hydrophobic groove known as the BH3-binding groove.7 The remaining subgroup is composed of a diverse set of proteins that are unrelated to each other except for the possession of the BH3 domain.7 These BH3-only proteins sense and convey apoptotic cell death signals, ultimately leading to the activation of BAX and BAK.8, 9 The antiapoptotic BCL-2 subfamily proteins bind the BH3 domain of BAX/BAK and of the BH3-only proteins through their BH3-binding groove.10, 11, 12, 13, 14, 15Biochemical studies have discovered that a number of the BH3-only proteins termed ‘activators'', such as BID and BIM, bind directly to BAX and induce its activation, whereas other BH3-only proteins termed ‘sensitizers'' induce apoptosis by releasing the activators sequestered by the antiapoptotic proteins.5, 16, 17 A recent crystallographic study revealed that the BID BH3 peptide binds to the canonical BH3-binding groove of BAX and induces a pronounced conformational change that exposes the BH3 domain of BAX.18 The activated BAX oligomerizes to induce the permeabilization of the MOM.6 The antiapoptotic BCL-2 proteins were suggested to sequester the BH3 domains of both BAX and the activator BH3-only proteins to prevent the BAX oligomerization.18Apoptosis is attenuated in cancer cells because of the abundance of antiapoptotic BCL-2 proteins and/or prevention of apoptosis induction. Anticancer BH3 peptides have been developed, especially those derived from BIM, which interacts with all of the antiapoptotic proteins with extremely high affinity.15, 19 These BH3 peptides exhibit a broad and multimodal targeting of the BCL-2 family proteins.20, 21, 22 Promising small molecular anticancer compounds have also been developed that mimic the BH3 peptides and bind to the surface groove of the antiapoptotic proteins.23 ABT-737 and ABT-263 selectively bind to and lower the amounts of the functional BCL-2, BCL-XL and BCL-w proteins to induce the apoptotic death of tumor cells that depend especially on the overexpression of the three proteins.24, 25 The BH3 peptides and the BH3 mimetics both bear an intrinsic shortcoming in that they inhibit the BCL-2 family proteins not only in cancer cells but also in normal cells as they cannot distinguish cancerous from normal cells.One of the hallmarks of many cancer and tumor cells is the hyperactivation of the serine/threonine (Ser/Thr) protein kinase Akt, which is a key signaling molecule in the cellular survival pathway.26 In many types of cancers, including glioma, prostate cancer and breast cancer, Akt is required to maintain a proliferative state and for progression into a more malignant state in conjunction with genetic mutations.26, 27, 28We set out to develop a molecule that can respond to the hyperactivity of Akt and can lead to the death of cancer cells. Herein, we describe the embedment of the Akt recognition sequence into the BIM BH3 peptide and the cancer cell-specific apoptogenic property of the resulting BIM BH3 peptide variant characterized by X-ray crystallography, calorimetry and cell-based biochemistry.  相似文献   

16.
We previously found that preformed complexes of BAK with antiapoptotic BCL2 proteins predict BH3 mimetic sensitivities in lymphohematopoietic cells. These complexes have not previously been examined in solid tumors or in the context of conventional anticancer drugs. Here we show the relative amount of BAK found in preformed complexes with MCL1 or BCLXL varies across ovarian cancer cell lines and patient-derived xenografts (PDXs). Cells bearing BAK/MCL1 complexes were more sensitive to paclitaxel and the MCL1 antagonist S63845. Likewise, PDX models with BAK/MCL1 complexes were more likely to respond to paclitaxel. Mechanistically, BIM induced by low paclitaxel concentrations interacted preferentially with MCL1 and displaced MCL1-bound BAK. Further studies indicated that cells with preformed BAK/MCL1 complexes were sensitive to the paclitaxel/S63845 combination, while cells without BAK/MCL1 complexes were not. Our study suggested that the assessment of BAK/MCL1 complexes might be useful for predicting response to paclitaxel alone or in combination with BH3 mimetics.Subject terms: Chemotherapy, Apoptosis  相似文献   

17.
ASK1-JNK signaling promotes mitochondrial dysfunction-mediated apoptosis, but the bridge between JNK and apoptosis is not fully understood. PUMA induces apoptosis through BAX/BAK. Our previous study suggests a therapeutic potential of PUMA for ovarian cancer. However, whether and how PUMA activates ASK1 remains unclear. Here, we found for the first time that PUMA activated ASK1 by dissociating thioredoxin (TRX) from ASK1, however, it neither interacted with ASK1 nor TRX. Furthermore, PUMA overexpression caused ROS release from mitochondrial. H2O2 significantly impaired the interaction of ASK1 with TRX, whereas ROS scavenger NAC effectively abrogated the H2O2 effect, partly rescued PUMA-interfered interaction of ASK1 with TRX, and also abolished ASK1 phosphorylation. Interestingly, PUMA could not impair the association of ASK1 with TRX-C32S or TRX-C35S, two TRX mutants which are no longer oxidized in response to ROS. We further showed that PUMA activated ASK1-JNK axis to phosphorylate BCL-2 and BCL-XL, further augmenting apoptosis of ovarian cancer cells. In vivo, PUMA adenovirus combined with paclitaxel significantly inhibited intrinsically cisplatin-resistant ovarian cancer growth, and caused phosphorylation of BCL-2 and BCL-XL. Our results from human ovarian cancer TMA chips also revealed a positive correlation between PUMA expression and the phosphorylation of BCL-2 and BCL-XL. More importantly, all patients had no distal metastasis, implying a possibly clinical significance. Collectively, our results reveal a new pro-apoptotic signal amplification mechanism for PUMA by which PUMA overexpression first induces ROS-mediated dissociation of TRX from ASK1, and then causes JNK activation-triggering BCL-2/BCL-XL phosphorylation, ultimately augmenting apoptosis in ovarian cancer.  相似文献   

18.
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The ‘BCL-2-regulated'' or ‘intrinsic'' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, ‘BH3-mimetics'', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.  相似文献   

19.
Bcl-2-protein family members are essential regulators of apoptosis. Anti-apoptotic Bcl-2 proteins ensure cell survival via different mechanisms, including via binding of pro-apoptotic Bcl-2-family members and the modulation of intracellular Ca2+-transport systems. Many cancer cells upregulate these proteins to overcome the consequences of ongoing oncogenic stress. Bcl-2 inhibition leading to cell death, therefore emerged as a novel cancer therapy. Different Bcl-2 inhibitors have already been developed including the hydrophobic cleft-targeting BH3 mimetics, which antagonize Bcl-2’s ability to scaffold and neutralize pro-apoptotic Bcl-2-family members. As such, the BH3 mimetics have progressed into clinical studies as precision medicines. Furthermore, new inhibitors that target Bcl-2’s BH4 domain have been developed as promising anti-cancer tools. Given Bcl-2’s role in Ca2+ signaling, these drugs and tools can impact Ca2+ signaling. In addition to this, some Bcl-2 inhibitors may have “off-target” effects that cause Ca2+-signaling dysregulation not only in cancer cells but also in healthy cells, resulting in adverse effects. In this review, we aim to provide an up-to-date overview of the involvement of intracellular Ca2+ signaling in the working mechanism and “off-target” effects of the different Bcl-2-antagonizing small molecules and peptides.  相似文献   

20.
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis1. Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)1. After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues2.In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)3-6. Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation7,8. In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members7,9. As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization10. LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)10. This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)11. As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号