首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinocerebellar ataxia type 6 (SCA6) is one of three allelic disorders caused by mutations of CACNA1A gene, coding for the pore-forming subunit of calcium channel type P/Q. SCA6 is associated with small expansions of a CAG repeat at the 3' end of the gene, while point mutations are responsible for its two allelic disorders (Episodic Ataxia type 2 and Familial Hemiplegic Migraine). Genetic, clinical, pathological and pathophysiological data of SCA6 patients are reviewed and compared to those of other SCAs with expanded CAG repeats as well as to those of its allelic channelopathies, with particular reference to Episodic Ataxia type 2. Overall SCA6 appears to share features with both types of disorders, and the question as to whether it belongs to polyglutamine disorders or to channelopathies remains unanswered at present.  相似文献   

2.
We reported elsewhere that an untranslated CTG expansion causes the dominantly inherited neurodegenerative disorder spinocerebellar ataxia type 8 (SCA8). SCA8 shows a complex inheritance pattern with extremes of incomplete penetrance, in which often only one or two affected individuals are found in a given family. SCA8 expansions have also been found in control chromosomes, indicating that separate genetic or environmental factors increase disease penetrance among SCA8-expansion-carrying patients with ataxia. We describe the molecular genetic features and disease penetrance of 37 different families with SCA8 ataxia from the United States, Canada, Japan, and Mexico. Haplotype analysis using 17 STR markers spanning an approximately 1-Mb region was performed on the families with ataxia, on a group of expansion carriers in the general population, and on psychiatric patients, to clarify the genetic basis of the reduced penetrance and to investigate whether CTG expansions among different populations share a common ancestral background. Two major ancestrally related haplotypes (A and A') were found among white families with ataxia, normal controls, and patients with major psychosis, indicating a common ancestral origin of both pathogenic and nonpathogenic SCA8 expansions among whites. Two additional and distinct haplotypes were found among a group of Japanese families with ataxia (haplotype B) and a Mexican family with ataxia (haplotype C). Our finding that SCA8 expansions on three independently arising haplotypes are found among patients with ataxia and cosegregate with ataxia when multiple family members are affected further supports the direct role of the CTG expansion in disease pathogenesis.  相似文献   

3.
《Autophagy》2013,9(5):574-580
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

4.
5.
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

6.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

7.

Background

The POU family genes containing the POU domain are common in vertebrates and invertebrates and play critical roles in cell-type-specific gene expression and cell fate determination.

Results

Har-POU, a new member of the POU gene family, was cloned from the suboesophageal ganglion of Helicoverpa armigera (Har), and its potential functions in the development of the central nervous system (CNS) were analyzed. Southern blot analysis suggests that a single copy of this gene is present in the H. armigera haploid genome. Har-POU mRNA is distributed widely in various tissues and expressed highly in the CNS, salivary gland, and trachea. In vitro-translated Har-POU specifically bound canonical octamer motifs on the promoter of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) gene in H. armigera. Expression of the Har-POU gene is markedly higher in the CNS of nondiapause-destined pupae than in diapause-destined pupae. Expression of the Har-POU gene in diapausing pupae was upregulated quickly by injection of ecdysone.

Conclusion

Har-POU may respond to ecdysone and bind to the promoter of DH-PBAN gene to regulate pupal development in H. armigera.  相似文献   

8.
9.
Rajawat Y  Hilioti Z  Bossis I 《Autophagy》2010,6(8):1224-1226
Autophagy is an intracellular catabolic process that responds with great sensitivity to nutrient availability, implying that certain macro- or micro-nutrients are involved. We found that retinoic acid promotes autophagosome maturation through a pathway independent from the classic nuclear retinoid receptors. Retinoic acid redistributes the cation-independent mannose-6-phosphate receptor from the trans-Golgi region to maturing autophagosomal structures inducing their acidification. Manipulation of the autophagic activity by retinoids could have enormous health implications, since they are essential dietary components and frequently used pharmaceuticals.  相似文献   

10.
11.
Abstract

Spinocerebellar ataxia type 2 (SCA2) is a redox-sensitive neurodegenerative disease affecting the cerebellum, fibre connections in the cerebellum, the peripheral nervous system, and extracerebellar central pathways. Currently, Cuba has the highest reported global rate for this disease. The aim of this review article is to summarize and discuss the current knowledge about evidence of oxidative stress during SCA2. Recent reports have suggested that ataxin 2 and other related factors contribute to the redox imbalance in this disease. It is important to recognize and clarify the molecular mechanisms associated with the redox imbalance to consider ataxias innovative approaches to counteract oxidative stress-induced tissue damage, through alternative therapeutic or nutritional intervention in SCA2 and related diseases.  相似文献   

12.
13.
Autophagy is an alternative cell death pathway that is induced by mammalian target of rapamycin (mTOR) inhibitors and up-regulated when apoptosis is defective. We investigated radiation-induced autophagy in the presence or absence of Bax/Bak with or without an mTOR inhibitor, Rad001. Two isogenic cell lines, wild type (WT) and Bak/Bak(-/-) mouse embryonic fibroblasts and tumor cell lines were used for this study. Irradiated Bak/Bak(-/-) cells had a decrease of Akt/mTOR signaling and a significant increase of pro-autophagic proteins ATG5-ATG12 COMPLEX and Beclin-1. These molecular events resulted in an up-regulation of autophagy. Bax/Bak(-/-) cells were defective in undergoing apoptosis but were more radiosensitive than the WT cells in autophagy. Both autophagy and sensitization of Bak/Bax(-/-) cells were further enhanced in the presence of Rad001. In contrast, inhibitors of autophagy rendered the Bak/Bax(-/-) cells radioresistant, whereas overexpression of ATG5 and Beclin-1 made the WT cells radiosensitive. When this novel concept of radiosensitization was tested in cancer models, small interfering RNAs against Bak/Bax also led to increased autophagy and sensitization of human breast and lung cancer cells to gamma radiation, which was further enhanced by Rad001. This is the first report to demonstrate that inhibition of pro-apoptotic proteins and induction of autophagy sensitizes cancer cells to therapy. Therapeutically targeting this novel pathway may yield significant benefits for cancer patients.  相似文献   

14.
15.
Autophagy is a type of cellular catabolic degradation response to nutrient starvation or metabolic stress. The main function of autophagy is to maintain intracellular metabolic homeostasis through degradation of unfolded or aggregated proteins and organelles. Although autophagic regulation is a complicated process, solid evidence demonstrates that the PI3K-Akt-mTOR, LKB1-AMPK-mTOR and p53 are the main upstream regulators of the autophagic pathway. Currently, there is a bulk of data indicating the important function of autophagy in cancer. It is noteworthy that autophagy facilitates the cancer cells' resistance to chemotherapy and radiation treatment. The abrogation of autophagy potentiates the re-sensitization of therapeutic resistant cancer cells to the anticancer treatment via autophagy inhibitors, such as 3-MA, CQ and BA, or knockdown of the autophagy related molecules. In this review, we summarize the accumulation of evidence for autophagy's involvement in mediating resistance of cancer cells to anticancer therapy and suggest that autophagy might be a potential therapeutic target in anticancer drug resistance in the future.  相似文献   

16.
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.  相似文献   

17.
《Autophagy》2013,9(7):1055-1056
Pancreatic beta-cell dysfunction is central to the development and worsening of type 2 diabetes. Whereas beta-cell apoptosis plays a major role in reducing beta-cell mass in diabetes, alterations of autophagy can also lead to beta-cell death, as recently demonstrated in type 2 diabetic subjects. In addition, several studies with cell lines and rodent models have shown the importance of autophagy in regulating beta-cell survival and function. Although most of the underlying molecular mechanisms remain to be elucidated, this growing evidence raises interest in the role of autophagy in beta-cell pathophysiology and suggests the possibility of exploring autophagic processes to develop tools for protection of the pancreatic beta-cell in type 2 diabetes.  相似文献   

18.
《Autophagy》2013,9(8):1232-1234
The relationships between autophagy and apoptosis have been examined quite extensively and have often been shown to be reciprocally regulated responses to stresses such as exposure of the tumor cells to chemotherapeutic drugs and radiation. However, there is now evidence that autophagy may also play a role in tumor dormancy. Given that tumor dormancy and disease recurrence are poorly understood phenomenon which are nevertheless critical elements of patient morbidity and mortality, this commentary develops the postulate that autophagy and senescence may be related responses that influence the capacity of the tumor cell to maintain a prolonged state of growth arrest that can be succeeded by tumor regrowth and disease recurrence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号