首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we used the plasmid relaxation assay, a very sensitive method for detection of DNA strand breaks in vitro, in order to evaluate the role of peptide fragments of histone H2B in DNA strand breakage induced by copper and nickel. We have found that in the presence of peptides modeling the histone fold domain (H2B32-62 and H2B63-93) as well as the N-terminal tail (H2B1-31) of histone H2B there is an increased DNA damage by Cu2+/H2O2 and Ni2+/H2O2 reaction mixtures. On the contrary, the C-terminal tail (H2B94-125) seems to have a protective role on the attack of ROS species to DNA. We have rendered our findings to the interactions of the peptides with DNA, as well as with the metal.  相似文献   

2.
《Free radical research》2013,47(4-6):347-354
Exposure of hepatoma lclc7 cells to 2,3-drniethoxy-1.4-naphthoquinone (DMNQ) resulted in a sustained elevation of cytosolic Ca2+. DNA single strand breaks and cell killing. DNA single strand break formation was prevented when cells were preloaded with either of the intracellular Ca2+ chelators. Quin 2 or BAPTA, to buffer the increase in cytosolic Ca2+ concentration induced by the quinone. DMNQ caused marked NAD+ depletion which was prevented when cells were preincubated with 3-aminobenzamide. an inhibitor of nuclear poly-(ADP-ribose)-synthetase activity. or with either of the two Ca2+ chelators. However. 3-aminobenzamide did not protect the hepatoma cells from loss of viability. Our results indicate that quinone-induced DNA damage. NAD+ depletion and cell killing are mediated by a sustained elevation of cytosolic Ca2+  相似文献   

3.
The amino acid histidine was found to increase the toxicity of H2O2 in cultured mammalian cells. Histidine also augmented the level of DNA single strand breaks (SSB) detectable in cells exposed to the oxidant and, in addition, resulted in the appearance of DNA double strand breaks (DSB), a lesion which is not produced by H2O2 alone.  相似文献   

4.
《Free radical research》2013,47(3):266-275
Abstract

Cholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) after the incubation of 2′-deoxyguanosine (dGuo) with ChOOH and Cu2+. In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation.  相似文献   

5.
Here we have examined the association of an aureolic acid antibiotic, chromomycin A3 (CHR), with Cu2+. CHR forms a high affinity 2:1 (CHR:Cu2+) complex with dissociation constant of 0.08 × 10−10 M2 at 25°C, pH 8.0. The affinity of CHR for Cu2+ is higher than those for Mg2+ and Zn2+ reported earlier from our laboratory. CHR binds preferentially to Cu2+ in presence of equimolar amount of Zn2+. Complex formation between CHR and Cu2+ is an entropy driven endothermic process. Difference between calorimetric and van’t Hoff enthalpies indicate the presence of multiple equilibria, supported from biphasic nature of the kinetics of association. Circular dichroism spectroscopy show that [(CHR)2:Cu2+] complex assumes a structure different from either of the Mg2+ and Zn2+ complex reported earlier. Both [(CHR)2:Mg2+] and [(CHR)2:Zn2+] complexes are known to bind DNA. In contrast, [(CHR)2:Cu2+] complex does not interact with double helical DNA, verified by means of Isothermal Titration Calorimetry of its association with calf thymus DNA and the double stranded decamer (5′-CCGGCGCCGG-3′). In order to interact with double helical DNA, the (antibiotic)2 : metal (Mg2+ and Zn2+) complexes require a isohelical conformation. Nuclear Magnetic Resonance spectroscopy shows that the Cu2+ complex adopts a distorted octahedral structure, which cannot assume the required conformation to bind to the DNA. This report demonstrates the negative effect of a bivalent metal upon the DNA binding property of CHR, which otherwise binds to DNA in presence of metals like Mg2+and Zn2+. The results also indicate that CHR has a potential for chelation therapy in Cu2+ accumulation diseases. However cytotoxicity of the antibiotic might restrict the use.  相似文献   

6.
7.
H. Schweitz 《Biopolymers》1969,8(1):101-119
The mechanism of degradation of calf thymus DNA by H2O2 in dark and light, and in the presence of either Cu++, Fe++, or Fe+++ ions has been investigated by following the decrease of molecular weight M?w by light scattering. Both in the dark and in light, the rate of degradation decreases in the following order: Cu++>Fe++>Fe+++. In order to exploit quantitatively the variation of M?w with time, we calculated the probability p(t) of rupture in a double stranded polymer as a function of the occurence at random of both breaks of the “first kind” (single hits) and of the “second kind” (double hits), when there are caused by any degrading agent. The value of p(t) can then be related to M?w(t) for the present case of a randomly polydisperse sample of DNA molecules. In the dark, and in the presence of Cu++ ions, a degradation of the first kind (which takes place through the simultaneous or successive splitting of both strands of DNA at the same level) is the only one so far observed. The number of degradation sites of the first kind is equivalent to the number of bound Cu++ ions in inner sites of DNA. A model is set up to explain the successive breaks of the two strands of the DNA molecule through the formation of a complex (DNA site–Cu++-H2O2) which exhibits peroxidative properties. The comparison of the degradation induced under these conditions in a native and a sonicated DNA, shows that the specific sites of attack of ultrasonic waves are not specific sites of H2O2 action in the presence of Cu++ ions. In the dark and in the presence of Fe++ or Fe+++ ions, breaks of the first kind and second kind are superimposed, but the last are predominant. This is ascribed to the low binding of iron ions in inner sites of DNA under these conditions. A large increase in degradation rate of the second kind occurred in the presence of light (with or without added metallic ions and) is ascribed to the action of the free radicals HO· (and HO2·) which arise from the photolysis of H2O2. These results are discussed in relation to those obtained by the action of ionizing radiations on aqueous solutions of DNA.  相似文献   

8.
The effect of a temporally incoherent magnetic field noise on microwave-induced DNA single and double strand breaks in rat brain cells was investigated. Four treatment groups of rats were studied: microwave-exposure (continuous-wave 2450-MHz microwaves, power density 1 mW/cm2, average whole-body specific absorption rate of 0.6 W/kg), noise-exposure (45 mG), microwave + noise-exposure, and sham-exposure. Animals were exposed to these conditions for 2h. DNA single- and double-strand breaks in brain cells of these animals were assayed 4h later using a microgel electrophoresis assay. Results show that brain cells of microwave-exposed rats had significantly higher levels of DNA single- and double-strand breaks when compared with sham-exposed animals. Exposure to noise alone did not significantly affect the levels (i.e., they were similar to those of the sham-exposed rats). However, simultaneous noise exposure blocked microwave-induced increases in DNA strand breaks. These data indicate that simultaneous exposure to a temporally incoherent magnetic field could block microwave-induced DNA damage in brain cells of the rat.  相似文献   

9.
The effects of adriamycin (AM) on DNA repair replication, the frequency of sister-chromatid exchange (SCE), the rate of cell proliferation and the frequency of DNA strand breaks were studied in human cells in vitro. No repair replication was observed in lymphocytes exposed to AM in concentrations up to 10?3 moles/1. DNA repair replication induced by UV and alkylating agents was not affected by a concentration of AM that completely inhibited cell proliferation (10?6 moles/1).Fibroblasts exposed to AM at 10?4 moles/1 in the presence of hydroxyurea showed an increase of strand breaks and cross-links in DNA. When AM was added to UV-irradiated fibroblasts, there was an increase of DNA strand breaks in addition to the breaks caused by UV alone. Similar effects were observed in lymphocytes.A dose-dependent increase of SCE was observed in lymphocytes exposed to low concentrations of AM (<10?7 moles/1). At higher concentrations the increase of SCE levelled off, and cell proliferation became severely inhibited. There was no evidence of removal of SCE-inducing damage in cells exposed to AM during G0 or G1. The level of SCE induced in the third cell cycle after treatment with AM was not different from that induced during the first two cell cycles.These results suggest that the various genotoxic and cytotoxic effects of AM are caused by different types of cellular damage. Moreover, AM-induced DNA damage persists for several cell cycles in human cells in vitro and seems to be resistant to repair activity.  相似文献   

10.
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.  相似文献   

11.
《Free radical research》2013,47(4-6):241-258
The asorbic acid (AH?) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH? oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH? oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH? but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH? oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2?produced by pulse radiolysis as a reductant, we found that AH? oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

12.
This work presents a neutral filter elution method for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay will detect the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increases with X-ray dose. Certain conditions for deproteinization, pH, and filter type are shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induce apparent DNA double strand breaks, although the ratios of double to single strand breaks vary from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters results in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA bands with a double stranded DNA marker in cesium chloride. This evidence suggests that the assay detects DNA double strand breaks. L1210 cells are shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes.  相似文献   

13.
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.  相似文献   

14.
DNA damage induced by administration of dimethylarsinic acid (DMAA) to rats and mice was investigated. At 12 h after administration of DMAA, DNA single-strand breaks were induced markedly in lung. The majority of dimethylarsine, one of the main metabolites, in the expired air was excreted within 6–18 h after administration of DMAA to rats. In vitro experiments using nuclei isolated from lung of mice indicated that DNA strand breaks were caused by dimethylarsine. Furthermore, the strand breaks after exposure to dimethylarsine were reduced in the presence of catalase and/or superoxide dismutase. These results strongly suggest that the strand breaks are induced not by dimethylarsine itself but by active oxygen, e.g., O 2 ? and ·OH, produced both by dimethylarsine and molecular oxygen. When DNA was exposed to dimethylarsine, thiobarbituric acid (TBA)-reactive intermediates andcis-thymine glycol were produced. Dimethylarsine appears to induce DNA damage by the mechanism similar to the damage produced by ionizing radiation.  相似文献   

15.
When cells are exposed to radiation serious lesions are introduced into the DNA including double strand breaks (DSBs), single strand breaks (SSBs), base modifications and clustered damage sites (a specific feature of ionizing radiation induced DNA damage). Radiation induced DNA damage has the potential to initiate events that can lead ultimately to mutations and the onset of cancer and therefore understanding the cellular responses to DNA lesions is of particular importance. Using γH2AX as a marker for DSB formation and RAD51 as a marker of homologous recombination (HR) which is recruited in the processing of frank DSBs or DSBs arising from stalled replication forks, we have investigated the contribution of SSBs and non-DSB DNA damage to the induction of DSBs in mammalian cells by ionizing radiation during the cell cycle. V79-4 cells and human HF19 fibroblast cells have been either irradiated with 0–20 Gy of γ radiation or, for comparison, treated with a low concentration of hydrogen peroxide, which is known to induce SSBs but not DSBs. Inhibition of the repair of oxidative DNA lesions by poly(ADP ribose) polymerase (PARP) inhibitor leads to an increase in radiation induced γH2AX and RAD51 foci which we propose is due to these lesions colliding with replication forks forming replication induced DSBs. It was confirmed that DSBs are not induced in G1 phase cells by treatment with hydrogen peroxide but treatment does lead to DSB induction, specifically in S phase cells. We therefore suggest that radiation induced SSBs and non-DSB DNA damage contribute to the formation of replication induced DSBs, detected as RAD51 foci.  相似文献   

16.
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after γ-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced γ-H2AX foci formation in response to γ-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced γ H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.  相似文献   

17.
Dysfunctional accumulation of amyloid β‐protein (Aβ) mediated by Cu2+ exhibits higher neurotoxicity and accelerates the progress of Alzheimer's disease, so inhibition of Cu2+‐mediated Aβ aggregation and cytotoxicity has been considered as a therapeutic strategy for the disease. Herein, a nonapeptide was designed by linking HH to the C‐terminus of a peptide inhibitor of Aβ aggregation, LVFFARK (LK7). We found that the nonapeptide, LK7‐HH, possessed dual functionality, including enhanced inhibition capability on Aβ aggregation as compared to LK7, and chelating Cu2+ with a dissociation constant of 5.50 μM. This enabled LK7‐HH to arrest the generation of reactive oxygen species catalyzed by Cu2+ or Cu2+‐Aβ complex, and to inhibit Cu2+‐induced Aβ aggregation. Moreover, in contrast with the cytotoxicity of LK7 aggregates, LK7‐HH was biocompatible because HH conjugation made its aggregation behavior different from LK7. Thus, LK7‐HH efficiently suppressed Cu2+‐mediated Aβ aggregation and cytotoxicity. An equimolar concentration of LK7‐HH increased cell viability from 50% to 90% when treating Aβ40‐Cu2+ complexes. The results provided insights into the roles of HH in enhancing the inhibition of Aβ and Cu2+‐induced Aβ aggregations, in eliminating Cu2+‐induced cytotoxicities by arresting generation of reactive oxygen species, and in making the peptide biocompatible. Therefore, this work would contribute to the design of potent peptide‐based inhibitors of Cu2+‐mediated Aβ aggregation and cytotoxicity.  相似文献   

18.
Morin is a potential inhibitor of amyloid β-peptide aggregation. This aggregation is involved in the pathogenesis of Alzheimer’s disease. Meanwhile, morin has been found to be mutagenic and exhibits peroxidation of membrane lipids concurrent with DNA strand breaks in the presence of metal ions. To clarify a molecular mechanism of morin-induced DNA damage, we examined the DNA damage and its site specificity on 32P-5′-end-labeled human DNA fragments treated with morin plus Cu(II). The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, was also determined in calf thymus DNA treated with morin plus Cu(II). Morin-induced DNA strand breaks and base modification in the presence of Cu(II) were dose dependent. Morin plus Cu(II) caused piperidine-labile lesions preferentially at thymine and guanine residues. The DNA damage was inhibited by methional, catalase and Cu(I)-chelator bathocuproine. The typical ?OH scavengers ethanol, mannitol and sodium formate showed no inhibitory effect on DNA damage induced by morin plus Cu(II). When superoxide dismutase was added to the solution, DNA damage was not inhibited. In addition, morin plus Cu(II) increased 8-oxodG formation in calf thymus DNA fragments. We conclude that morin undergoes autoxidation in the presence of Cu(II) via a Cu(I)/Cu(II) redox cycle and H2O2 generation to produce Cu(I)-hydroperoxide, which causes oxidative DNA damage.  相似文献   

19.
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.  相似文献   

20.
When different strains of Escherichia coli are exposed to Cd2+, the cells accommodate after a long lag and proliferate. The time required for this response depends on the nature of the strain and the supplements in the growth medium. Immediately after exposure to Cd2+, considerable single strand breaks in the DNA are observed but the DNA is repaired prior to the initiation of cell proliferation. The finding that accommodation occurs in DNA polymerase I-deficient mutant cells suggests that DNA polymerase I may not be required for repair of damaged DNA in Cd2+-exposed cells. The recovery of Cd2+-exposed cells in a temperature-sensitive DNA ligase mutant cells at the permissive temperature (30° C) and failure to recover at the non-permissive temperature (42° C) indicates, however, that DNA ligase is involved in the repair of the single strand breaks associated with Cd2+-induced damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号