首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syndecan-4 participates in focal adhesion by non-G protein-dependent activation of protein kinase C. Ligation of syndecan-4 with antithrombin elicits pertussis toxin-sensitive chemotaxis of leukocytes. As activation of protein kinase C stimulates release of sphingosine-1-phosphate, a chemoattracting G protein-coupled receptor agonist, we studied directional migration of leukocytes in response to phorbol myristate acetate (PMA), a direct activator of protein kinase C. Human peripheral blood neutrophils, monocytes, and lymphocytes were purified and tested for chemotactic migration in micropore filter assays in response to PMA. Dose-dependent stimulation of migration was seen only when leukocytes were exposed to concentration gradients of PMA; in the absence of such a gradient, inhibition of random migration was induced. Dimethylsphingosine inhibited PMA-induced leukocyte chemotaxis, indicating that activation of sphingosine kinase for enhanced production of sphingosine-1-phosphate mediates the chemotactic response to PMA. Pertussis toxin abrogated the chemotactic response to PMA, suggesting involvement of G protein-coupled sphingosine-1-phosphate receptor. Dimethylsphingosine also inhibited leukocyte chemotaxis toward antithrombin, indicating that similar mechanisms may be involved upon syndecan-4 ligation. Data show that protein kinase C-dependent activation of sphingosine kinase may play a central role in leukocyte chemotaxis toward non-G protein-coupled receptor agonists.  相似文献   

2.
Rat peripheral blood large granular lymphocytes (LGL) were isolated by fractionation on discontinuous Percoll gradients. LGL migration was studied using nitrocellulose filters. Rat LGLs migrated into nitrocellulose filters in response to N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and serum components. Percoll-enriched high-density lymphocytes had small, but significant, migratory capacity in response to stimuli under these conditions. Removal of OX-19+ contaminating cells by panning confirmed the migratory capability of rat LGL/NK cells under these conditions. Checkerboard analysis of the LGL response to chemoattractants revealed that induction of migration involved chemokinesis although a chemotactic component was also discernible. The prompt migration of rat LGL in response to different stimuli is consistent with the hypothesis that these cells may represent one of the first easily mobilizable lines of resistance against noxious agents. In the rat combined in vitro/in vivo studies may provide a better understanding of the regulation of LGL recruitment and extravasation.  相似文献   

3.
The Boyden chamber assay provides a convenient method of assessing cell migration and measuring cell motility coefficients at the population level. Previous models of this assay completely ignore cell sedimentation in the suspension, assuming that all cells have already settled on the filter surface before commencing migration within the filter. However, ignoring cell sedimentation could lead to poor data interpretation because the time required for cells to settle through the suspension is close to the incubation period of only a few hours. This study models the Boyden chamber assay by incorporating the cell settling process to account for the cells remaining in the upper well when other cells migrate in the filter. The simulations in this study elucidate the experiments in the literature that test the haptotactic and chemotactic responses of rabbit chondrocytes to type II collagen. This study determines the cell population random motility, as well as the haptotaxis and chemotaxis coefficients, by fitting the experimental data. Results show that the chemotactic motility coefficient is 100 times greater than the haptotactic coefficient, and the equilibrium collagen-receptor dissociation constant is about 10-fold the haptotactic counterpart. Diffusion causes the soluble collagen gradients in the chemotactic case to decline over time, while the coated collagen gradients in the haptotactic assay are likely to remain fixed. As a result, the chemotactic case exhibits a lower number of migrated cells than the haptotactic assay. This study also demonstrates the influences of the dimensionless parameters that control cell behavior in the Boyden assay, providing a reference for future experiment designs.  相似文献   

4.
Chemotaxis of large granular lymphocytes   总被引:2,自引:0,他引:2  
The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-beta and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1+ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 micron nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (greater than 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. The chemotactic LGL was HNK-1+, OKT11+ or HNK-1+, OKT11- on the basis of monoclonal antibody and complement depletion. They did not bear either T cell or monocyte cell surface markers, exhibiting an OKT3-, OKT4-, OKT8-, OKM1-, and MO2- phenotype, and did not form E rosettes at 29 degrees C, which is characteristic of lytic NK cells in contrast to T cells. Furthermore, a rat LGL leukemia (RNK) exhibited a chemotactic response to both f-MLP and casein. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML[3H]P, suggesting that LGL bear receptors for the chemotactic peptide.  相似文献   

5.
To study the effects of the cytokines IL-1 and TNF-alpha on the transendothelial migration of neutrophils, human umbilical vein endothelial cells (HUVEC) were grown to confluence on connective tissue prepared from human amniotic membrane. Pretreatment of HUVEC-amnion cultures with rIL-1 beta (7.5 ng/ml) or rTNF-alpha (5 ng/ml) for 4 h resulted in rapid migration of from 20 to 50% of subsequently added neutrophils across the endothelial monolayer. In contrast, only 3 +/- 3% of added neutrophils penetrated the HUVEC monolayer in the absence of any stimulus. The number of neutrophils that migrated across cytokine-treated HUVEC was similar to the number that traversed untreated monolayers in response to gradients of FMLP; in addition, it was only 35% less than the number of neutrophils that migrated in response to leukotriene B4. No consistent additive effect was seen when migration was induced by both cytokine pretreatment of the HUVEC and a chemotactic gradient. The number of neutrophils that migrated across IL-1-treated cultures was proportional to the number added over the range of 2.5 x 10(5) to 4 x 10(6) neutrophils. When used at optimal concentrations, IL-1 and TNF-alpha were equally effective in stimulating neutrophil migration; no additive effect was seen when HUVEC were pretreated with optimal doses of both cytokines together. Direct addition of IL-1 or TNF-alpha to a 1-h migration assay had no effect on neutrophil adhesion to or migration across HUVEC, either in the presence or absence of a chemotactic gradient. Stimulation of neutrophil transendothelial migration in this system did not appear to be caused by adsorption of cytokine by the amniotic tissue, nor was it due to contamination of the cytokine preparations by LPS. These results suggest that IL-1 and TNF-alpha, generated at sites of inflammation, may act upon the endothelium to promote emigration of neutrophils from the vasculature.  相似文献   

6.
The neuropeptides beta-endorphin and met-enkephalin are potent analgesics and have a broad spectrum of biologic activities including the recently described alterations of lymphocyte proliferation and antibody production. The current study demonstrates that beta-endorphin and met-enkephalin stimulate human mononuclear cell chemotaxis, as measured by the in vitro leading front assay for migration. The response to both beta-endorphin and met-enkephalin was bimodal, with peak activities occurring at 10(-12) M and 10(-8) M. The distance migrated in response to optimal concentrations of beta-endorphin or met-enkephalin was approximately 80% of that obtained with 10(-8) M formyl-methionyl-leucyl-phenylalanine (f-MLP) and was blocked by prior incubation with 10(-8) M naloxone. Removal of glass adherent cells resulted in a loss of the response to beta-endorphin. Quantitation of the number of cells responding to beta-endorphin showed that only about 50% as many cells responded to beta-endorphin as compared with f-MLP. Human neutrophils showed some migration in response to beta-endorphin and met-enkephalin, although the average optimal migration was less than 30% of that observed with 10(-8) M f-MLP. Studies of the in vivo infusion of beta-endorphin into the cerebral ventricle of the rat resulted in the immigration of macrophage-like cells and are consistent with the in vitro evidence for a chemotactic effect of beta-endorphin.  相似文献   

7.
Potassium pyroantimonate was used to localize sites of bound cations in human neutrophils under conditions of random migration, stimulated random migration (chemokinesis), and directed migration (chemotaxis). The cells were placed in a standard chamber in which 0.45-micron micropore filters separated the cells from the stimulus (buffer, Escherichia coli endotoxin-activated serum or the synthetic chemotactic peptide N-formyl-Met-Leu-Phe). The small pore filters permitted pseudopod formation but impeded cell imgration through the filter. Cells examined under all conditions had electron-dense precipitates of antimonate salts in some granules. However, antimonate deposits were localized in the condensed chromatin of the nucleus during random migration and associated to a large extent with the uncondensed nuclear chromatin during chemokinesis and chemotaxis. Under conditions of chemokinesis deposition of antimonate procipitates appeared on the cytoplasmic side of the plasma membrane of neutrophils whereas under conditions of chemotaxis cation deposits beneath the cell membrane were localized to the pseudopods which were directed toward the chemoattractant. In addition to endotoxin-activated serum, concentrations of N-formyl-Met-Leu-Phe which caused neutrophil chemotaxis (10(-8) M) also caused cation deposition beneath the cell membrane at the leading end of the cell regardless of whether albumin was present in the incubation media. However, with higher concentrations of the synthetic peptide (10(-5) M) which caused granule release and were not chemotactic, submembranous cation deposition was not seen. EDTA (10 mM) and EGTA (10 mM) removed nuclear, granular, and submembranous cation deposits from neutrophils examined under conditions of chemotaxis. X-ray microprobe analysis of antimonate deposits revealed the possible presence of calcium but did not detect sodium or magnesium. The data indicate that chemotactic factors induce submembranous deposition of cations, most likely Ca++, which localize to the leading edge of cells exposed to a gradient of chemoattractant.  相似文献   

8.
Neutrophils need to correctly interpret gradients of chemotactic factors (CFs) such as interleukin 8 (IL-8) to migrate to the site of infection and perform immune functions. Because diffusion-based chemotaxis assays used in previous studies suffer from temporally changing gradients, it is difficult to distinguish the influence of CF gradient steepness from mean CF concentration on chemotaxis. To better understand the roles of mean CF concentration and CF gradient steepness, we developed a microfluidic device that can maintain stable IL-8 gradients. We report that the random motility of neutrophils is a biphasic function of IL-8 concentration and its magnitude plays a decisive role in effective chemotaxis, a quantitative measure of migration. We show that the concentrations for the optimum chemotaxis in linear IL-8 gradients and for the maximum random motility in uniform IL-8 coincide. In contrast, we find that the steepness of IL-8 gradients has no significant effect on effective chemotaxis.  相似文献   

9.
Spatial control of actin polymerization during neutrophil chemotaxis   总被引:2,自引:0,他引:2  
Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.  相似文献   

10.
Neutrophils have a remarkable ability to detect the direction of chemoattractant gradients and move directionally in response to bacterial infections and tissue injuries. For their role in health and disease, neutrophils have been extensively studied, and many of the molecules involved in the signaling mechanisms of gradient detection and chemotaxis have been identified. However, the cellular-scale mechanisms of gradient sensing and directional neutrophil migration have been more elusive, and existent models provide only limited insight into these processes. Here, we propose a what we believe is a novel adaptive-control model for the initiation of cell polarization in response to gradients. In this model, the neutrophils first sample the environment by extending protrusions in random directions and subsequently adapt their sensitivity depending on localized, temporal changes in stimulation levels. Our results suggest that microtubules may play a critical role in integrating all the sensing events from the cellular periphery through their redistribution inside the neutrophils, and may also be involved in modulating local signaling. An unexpected finding was that model neutrophils exhibit significant randomness in timing and directionality of activation, comparable to our experimental observations in microfluidic devices. Moreover, their responses are robust against alterations of the rate and amplitude of the signaling reactions, and for a broad range in chemoattractant concentrations and spatial gradients.  相似文献   

11.
Human purified urokinase-type plasminogen activator (u-PA) stimulates chemoattractant activity for human neutrophils using modified Boyden chambers. Checkerboard analysis performed by adding different concentrations of u-PA above and below the polycarbonate filters revealed maximum migration required a positive concentration gradient. These results suggest that uPA was in fact stimulating neutrophil chemotaxis. Incubation of u-PA with an anti-u-PA goat antibody completely abolished the chemotactic activity of u-PA while incubation with the serine protease inhibitor, diisopropyl fluorophosphate, did not reduce chemotactic activity. Purified human tissue-type plasminogen activator demonstrated no chemotactic activity for human neutrophils when tested at concentrations similar to u-PA. These results suggests that the expression of chemotactic activity of u-PA may serve to recruit circulating leukocytes to the inflammatory site.  相似文献   

12.
Local chemical gradients can have a significant impact on bacterial population distributions within subsurface environments by evoking chemotactic responses. These local gradients may be created by consumption of a slowly diffusing nutrient, generation of a local food source from cell lysis, or dissolution of nonaqueous phase liquids trapped within the interstices of a soil matrix. We used a random walk simulation algorithm to study the effect of a local microscopic gradient on the swimming behavior of bacteria in a porous medium. The model porous medium was constructed using molecular dynamics simulations applied to a fluid of equal-sized spheres. The chemoattractant gradient was approximated with spherical symmetry, and the parameters for the swimming behavior of soil bacterium Pseudomonas putida were based on literature values. Two different mechanisms for bacterial chemotaxis, one in which the bacteria responded to both positive and negative gradients, and the other in which they responded only to positive gradients, were compared. The results of the computer simulations showed that chemotaxis can increase migration through a porous medium in response to microscopic-scale gradients. The simulation results also suggested that a more significant role of chemotaxis may be to increase the residence time of the bacteria in the vicinity of an attractant source.  相似文献   

13.
Clinical and scientific investigations of leukocyte chemotaxis will be greatly aided by an ability to measure quantitative parameters characterizing the intrinsic random motility, chemokinetic, and chemotactic properties of cell populations responding to a given attractant. Quantities typically used at present, such as leading front distances, migrating cell numbers, etc., are unsatisfactory in this regard because their values are affected by many aspects of the assay system unrelated to cell behavioral properties. In this paper we demonstrate the measurement of cell migration parameters that do, in fact, characterize the intrinsic cell chemosensory movement responses using cell density profiles obtained in the linear under-agarose assay. These parameters are the random motility coefficient, mu, and the chemotaxis coefficient, chi, which appear in a theoretical expression for cell population migration. We propose a priori the dependence of chi on attractant concentration, based on an independent experimental correlation of individual cell orientation bias in an attractant gradient with a spatial difference in receptor occupancy. Our under-agarose population migration results are consistent with this proposition, allowing chemotaxis to be reliably characterized by a chemotactic sensitivity constant, chi 0, to which chi is directly proportional. Further, chi 0 has fundamental significance; it represents the reciprocal of the difference in number of bound receptors across cell dimensions required for directional orientation bias. In particular, for the system of human peripheral blood polymorphonuclear neutrophil leukocytes responding to FNLLP, we find that the chemotaxis coefficient is a function of attractant concentration, a following the expression: chi = chi 0NT0 f(a) S(a) Kd/(Kd + a)2 where Kd is the FNLLP-receptor equilibrium dissociation constant and NT0 is the total number of cell surface receptors for FNLLP. f(a) is the fraction of surface receptors remaining after down-regulation, and S(a) is the cell movement speed, both known functions of FNLLP concentration. We find that chi 0NT0 = 0.2 cm; according to a theoretical argument outlined in the Appendix this means that these cells exhibit 75% orientation toward higher attractant concentration when the absolute spatial difference in bound receptors is 0.0025NT0 over 10 micron. (For example, if NT0 = 50,000 this would correspond to a spatial difference of 125 bound receptors over 10 micron.) This result can be compared with estimates obtained from visual studies of individual neutrophils.  相似文献   

14.
The migration of chemotactic bacteria in liquid media has previously been characterized in terms of two fundamental transport coefficients-the random motility coefficient and the chemotactic sensitivity coefficient. For modeling migration in porous media, we have shown that these coefficients which appear in macroscopic balance equations can be replaced by effective values that reflect the impact of the porous media on the swimming behavior of individual bacteria. Explicit relationships between values of the coefficients in porous and liquid media were derived. This type of quantitative analysis of bacterial migration is necessary for predicting bacterial population distributions in subsurface environments for applications such as in situ bioremediation in which bacteria respond chemotactically to the pollutants that they degrade.We analyzed bacterial penetration times through sand columns from two different experimental studies reported in the literature within the context of our mathematical model to evaluate the effective transport coefficients. Our results indicated that the presence of the porous medium reduced the random motility of the bacterial population by a factor comparable to the theoretical prediction. We were unable to determine the effect of the porous medium on the chemotactic sensitivity coefficient because no chemotactic response was observed in the experimental studies. However, the mathematical model was instrumental in developing a plausible explanation for why no chemotactic response was observed. The chemical gradients may have been too shallow over most of the sand core to elicit a measurable response. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 487-496, 1997.  相似文献   

15.
The adult respiratory distress syndrome and bacterial pneumonia are both characterized by an influx of neutrophils into the lung. The neutrophil has been implicated as having a "pathological" role in adult respiratory distress syndrome, in contrast to its role in bacterial pneumonia. We hypothesized that processes resulting in neutrophil recruitment to the lung are distinct, depending on whether the inflammatory stimulus arises in the intravascular or the alveolar compartment of the lung. Anesthetized sheep with lung lymph fistulas were utilized to access the three compartments of the lung relevant to studies of transpulmonary neutrophil migration. Serum, lung lymph, and bronchoalveolar lavage fluid were studied for neutrophil influx and chemotactic activity before and after administration of endotoxin by either an intravascular or inhaled alveolar route. Both groups developed significant neutrophil influx into the lymph and bronchoalveolar lavage fluid by 3 h postendotoxin. Those animals receiving intravascular endotoxin developed chemotactic gradients opposing neutrophil migration into the lung in contrast to animals receiving alveolar endotoxin, suggesting that neutrophil influx into the lung occurs by random migration.  相似文献   

16.
Gradients of secreted signaling proteins guide growing blood vessels during both normal and pathological angiogenesis. However, the mechanisms by which endothelial cells integrate and respond to graded distributions of chemotactic factors are still poorly understood. We have in this study investigated endothelial cell migration in response to hill-shaped gradients of vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 2 (FGF2) using a novel microfluidic chemotaxis chamber (MCC). Cell migration was scored at the level of individual cells using time-lapse microscopy. A stable gradient of VEGFA165 ranging from 0 to 50 ng/ml over a distance of 400 microm was shown to strongly induce chemotaxis of endothelial cells of different vascular origin. VEGFA121, unable to bind proteoglycan and neuropilin coreceptors, was also shown to induce chemotaxis in this setup. Furthermore, a gradient of FGF2 was able to attract venular but not arterial endothelial cells, albeit less efficiently than VEGFA165. Notably, constant levels of VEGFA165, but not of FGF2, were shown to efficiently reduce chemokinesis. Systematic exploration of different gradient shapes led to the identification of a minimal gradient steepness required for efficient cell guidance. Finally, analysis of cell migration in different regions of the applied gradients showed that chemotaxis is reduced when cells reach the high end of the gradient. Our findings suggest that chemotactic growth factor gradients may instruct endothelial cells to shift toward a nonmigratory phenotype when approaching the growth factor source.  相似文献   

17.
Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero ("cliff" gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant ("hill" gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.  相似文献   

18.
Polymorphonuclear neutrophils release ATP in response to stimulation by chemoattractants, such as the peptide N-formyl-methionyl-leucyl-phenylalanine. Released ATP and the hydrolytic product adenosine regulate chemotaxis of neutrophils by sequentially activating purinergic nucleotide and adenosine receptors, respectively. Here we show that that ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) is a critical enzyme for hydrolysis of released ATP by neutrophils and for cell migration in response to multiple agonists (N-formyl-methionyl-leucyl-phenylalanine, interleukin-8, and C5a). Upon stimulation of human neutrophils or differentiated HL-60 cells in a chemotactic gradient, E-NTPDase1 tightly associates with the leading edge of polarized cells during chemotaxis. Inhibition of E-NTPDase1 reduces the migration speed of neutrophils but not their ability to detect the orientation of the gradient field. Studies of neutrophils from E-NTPDase1 knock-out mice reveal similar impairments of chemotaxis in vitro and in vivo. Thus, E-NTPDase1 plays an important role in regulating neutrophil chemotaxis by facilitating the hydrolysis of extracellular ATP.  相似文献   

19.
The importance of CD44 in murine neutrophil chemotaxis was studied in a Zigmond chamber. WT neutrophils polarized more rapidly and more extensively than CD44-/- neutrophils, which showed slow random migration and reduced activation of RhoA. CD44+/- neutrophils polarized more slowly, formed fewer directionally polarized cells, and migrated more slowly than WT cells. Antibodies to CD44 decreased polarization of WT neutrophils and reduced directed migration but not migration speed, indicating that CD44 mediates chemotactic signaling and migration through different pathways, while a hyaluronate substratum markedly reduced both the speed and directed migration of WT cells. In contrast to macrophages, the level of cell surface CD44 in neutrophils was not affected by osteopontin expression and CD44 did not co-localize with osteopontin. In polarized neutrophils, CD44 was enriched in uropods while cortical actin was predominant at the leading edge. Thus, both polarization and directed migration of neutrophils are dependent on the expression of CD44 and its interaction with hyaluronan, which could modulate neutrophil migration into inflamed tissues.  相似文献   

20.
Infection of surgical wounds with toxic shock syndrome toxin 1 (TSST-1)-producing Staphylococcus aureus does not usually elicit a purulent response from the host. Because S. aureus is normally a pyogenic pathogen, this phenomenon suggests that strains of staphylococci that produce the exotoxin are able to inhibit the migration of polymorphonuclear neutrophils (PMN) to sites of infection. We have considered that inhibition of leukocyte migration may be an effect of secreted TSST-1 and have studied direct and indirect effects of the exotoxin on migratory functions of PMN in vitro. Preincubation of PMN with TSST-1 produced no inhibition of random motility or FMLP- or C5a-stimulated chemotaxis under agarose. Supernatant fluids from mononuclear leukocytes incubated with TSST-1, however, were potently inhibitory for both PMN random and chemotactic migratory functions. The inhibitor of migration was identified as TNF based upon neutralization by anti-TNF antiserum and its presence in the culture supernatant fluids assayed in terms of cytotoxicity for murine TNF-sensitive L-929 cell line cells. Preincubation of PMN with recombinant human TNF also inhibited subsequent PMN random and chemotactic migratory functions. We propose that TSST-1 inhibits the mobilization of PMN to sites of infection by stimulation of monocyte/macrophage TNF production and suggest that TNF may also contribute to some other effects of toxic shock syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号