首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T G Golos  J F Strauss 《Biochemistry》1988,27(9):3503-3506
Exposure of cultured human granulosa cells to 8-bromoadenosine cyclic 3',5'-phosphate (8-bromo-cAMP) resulted in a rapid increase in the content of the mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the de novo synthesis of cholesterol. HMG-CoA reductase mRNA levels increased within 2 h of stimulation and remained elevated for at least 6 h. Treatment of granulosa cells with 25-hydroxycholesterol, a soluble cholesterol analogue, in combination with aminoglutethimide to block conversion of cellular sterols to pregnenolone, resulted in suppression of HMG-CoA reductase mRNA. When cells were stimulated with 8-bromo-cAMP in the presence of 25-hydroxycholesterol and aminoglutethimide, the increase in HMG-CoA reductase mRNA provoked by the tropic agent was markedly attenuated. This indicates that 8-bromo-cAMP raises HMG-CoA reductase mRNA levels indirectly by accelerating steroidogenesis and depleting cellular sterol pools, thus relieving sterol-mediated negative feedback of HMG-CoA reductase gene expression. 25-Hydroxycholesterol in the presence of aminoglutethimide suppressed low-density lipoprotein (LDL) receptor mRNA, but 8-bromo-cAMP effected a significant stimulation of LDL receptor mRNA levels when added with hydroxysterol and aminoglutethimide. These findings reveal differential regulation of HMG-CoA reductase and LDL receptor mRNAs in the presence of sterol negative feedback.  相似文献   

2.
Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.  相似文献   

3.
4.
Metastatic renal cell carcinoma (RCC) is highly resistant to conventional systemic treatments, including chemotherapy, radiotherapy and hormonal therapies. Previous studies have shown over-expression of EGFR is associated with high grade tumors and a worse prognosis. Recent studies suggest anticancer therapies targeting the EGFR pathway have shown promising results in clinical trials of RCC patients. Therefore, characterization of the level and localization of EGFR expression in RCC is important for target-dependent therapy. In this study, we investigated the clinical significance of cellular localization of EGFR in human normal renal cortex and RCC. RCC and adjacent normal kidney tissues of 63 patients were obtained for characterization of EGFR expression. EGFR protein expression was assessed by immunohistochemistry on a scale from 0 to 300 (percentage of positive cells × staining intensity) and Western blotting. EGFR membranous staining was significantly stronger in RCC tumors than in normal tissues (P < 0.001). In contrast, EGFR cytoplasmic staining was significantly higher in normal than in tumor tissues (P < 0.001). The levels of membranous or cytoplasmic EGFR expression in RCC tissues were not correlated with sex, tumor grade, TNM stage or overall survival (P > 0.05). These results showed abundant expression of membranous EGFR in RCC, and abundant expression of cytoplasmic EGFR in normal tissues. EGFR expression in RCC was mostly located in the cell membrane, whereas the EGFR expression in normal renal tissues was chiefly seen in cytoplasm. Our results suggest different locations of EGFR expression may be associated with human renal tumorigenesis.  相似文献   

5.
Survivin, an important inhibitor of apoptosis, has been found to play an important role in the initiation, progression, and chemoradioresistance of human malignancies. Previously, we have reported that upregulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. The aim of this study was to assess prognostic significance of survivin protein expression in RCC and analyze its correlation with radiosensitivity of RCC cells. RT-PCR and Western blot assays were performed to detect survivin mRNA and protein expression in normal human kidney epithelial cell line (HKEC) or RCC cell lines. The expression of survivin mRNA in RCC and corresponding nontumor kidney tissues was also detected by RT-PCR. Immunohistochemistry was performed to determine survivin protein expression in 75 cases of RCC tissue samples. Moreover, the association of survivin protein expression with clinicopathogical factors and prognosis of RCC patients was statistically analyzed. Small interfering RNA was used to knockdown the endogenous survivin expression in RCC cell line (ACHN) and evaluate the effects of survivin knockdown on proliferation, apoptosis, and radiosensitivity of RCC cell line. RCC cells showed sufficient expression of survivin mRNA and protein, but the expression of survivin gene was not detected in normal HKEC. Moreover, the expression level of survivin mRNA in RCC tissues was significantly higher than that in corresponding nontumor kidney tissues. The immunostaining of survivin protein was mainly located in cytoplasm of RCC tumor cells. Tumor pathological stage (P = 0.028), grade (P = 0.004), and lymph node metastasis (P = 0.017) of RCC patients were significantly correlated with survivin protein expression. In addition, patients with high survivin levels had a significantly shorter overall survival than those with low levels (P < 0.001), and the expression of survivin protein was an independent prognostic factor for RCC patients (P = 0.008). The expression of survivin gene could be reduced in RCC cell line and survivin knockdown could inhibit growth and enhance in vivo radiosensitivity of RCC cell line by inducing apoptosis enhancement. Taken together, the status of survivin protein expression may be an independent factor for predicting the prognosis of RCC patients and tumor-specific survivin knockdown combined with radiotherapy will be a potential strategy for RCC therapy.  相似文献   

6.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

7.
8.
The two oxysterols, 27-hydroxycholesterol (27OH) and 24S-hydroxycholesterol (24OH), are both inhibitors of cholesterol synthesis and activators of the liver X receptor (LXR) in vitro. Their role as physiological regulators under in vivo conditions is controversial, however. In the present work, we utilized a previously described mouse model with overexpressed human sterol 27-hydroxylase (CYP27A1). The levels of 27OH were increased about 12-fold in the brain. The brain levels of HMG-CoA reductase mRNA and HMG-CoA synthase mRNA levels were increased. In accordance with increased cholesterol synthesis, most of the cholesterol precursors were also increased. The level of 24OH, the dominating oxysterol in the brain, was decreased by about 25%, most probably due to increased metabolism by CYP27A1. The LXR target genes were unaffected or slightly changed in a direction opposite to that expected for LXR activation. In the brain of Cyp27−/− mice, cholesterol synthesis was slightly increased, with increased levels of cholesterol precursors but normal mRNA levels of HMG-CoA reductase and HMG-CoA synthase. The mRNA levels corresponding to LXR target genes were not affected. The results are consistent with the possibility that both 24OH and 27OH are physiological suppressors of cholesterol synthesis in the brain. The results do not support the contention that 27OH is a general activator of LXR target genes in this organ.  相似文献   

9.
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr–/–) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3 months. When mice consume this diet for 6 months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r = –0.535, P < 0.0001) and LDL cholesterol (r = –0.559, P < 0.0001), but not with HDL cholesterol (P = 0.901) or triglycerides (P = 0.186). Such inverse correlations with total cholesterol (r = –0.504, P < 0.0001) and LDL cholesterol (r = –0.502, P < 0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.  相似文献   

10.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

11.

Background

The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4) are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC), as well as probed the biological function of Tensin3.

Principal Findings

Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50–100% reduction versus normal kidney cortex; P<0.001). Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration.

Conclusions

Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary tumors.  相似文献   

12.
13.
14.
Proprotein convertase subtilisin-kexin-9 (PCSK9) inhibition markedly augments the LDL lowering action of statins. The combination is being evaluated for long-term effects on atherosclerotic disease outcomes. However, effects of combined treatment on hepatic cholesterol and bile acid metabolism have not yet been reported. To study this, PCSK9-Y119X mutant (knockout) and wild-type mice were treated with or without atorvastatin for 12 weeks. Atorvastatin progressively lowered plasma LDL in each group, but no differences in liver cholesterol, cholesterol ester, or total bile acid concentrations, or in plasma total bile acid levels were seen. In contrast, atorvastatin increased fecal total bile acids (∼2-fold, P < 0.01) and cholesterol concentrations (∼3-fold, P < 0.01) versus controls for both PCSK9-Y119X and wild-type mice. All 14 individual bile acids resolved by LC-MS, including primary, secondary, and conjugated species, reflected similar increases. Expression of key liver bile acid synthesis genes CYP7A1 and CYP8B1 were ∼2.5-fold higher with atorvastatin in both strains, but mRNA for liver bile acid export and reuptake transporters and conjugating enzymes were not unaffected. The data suggest that hepatocyte cholesterol and bile acid homeostasis is maintained with combined PCSK9 and HMG-CoA reductase inhibition through efficient liver enzymatic conversion of LDL-derived cholesterol into bile acids and excretion of both, with undisturbed enterohepatic recycling.  相似文献   

15.

Objective

Study the effect of the 3:7 ratio of Astragalus total saponins and Curcumin on the model of diabetic nephropathy rats, and explore its mechanisms.

Methods

Diabetic nephropathy rats model was established by high-fat and high-sugar feed feeding combined with streptozotocin (STZ) injection in sublingual vein. Measured fasting blood glucose of rats on the 10, 20 and 30th day, and measured urine protein content in urine of rats on 30th days. Two hours after the last administration, measured glycated serum protein (GSP), insulin antibody (IA), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), malondialdehyde (MDA), insulin, superoxide dismutase (SOD), glutathione (GSH), urea nitrogen (BUN), creatinine (Cr) in the serum and calculated the renal index of rat. Take the viscera of pancreas and kidney, and HE staining, so as to observe pathological changes.

Result

Astragalus total saponins and Curcumin 3:7 compatibility each dose group can significantly reduce the diabetic nephropathy rats blood glucose of 30th days, significantly reduce the level of GSP, IA, TG, TC, LDL (P?<?0.01), and reduce MDA levels with different degrees (P?<?0.01 or P?<?0.05), and significantly increase the level of insulin (P?<?0.01), increase the level of HDL, SOD and GSH with different degrees (P?<?0.01 or P?<?0.05 or P?>?0.05); Astragalus total saponins and Curcumin 3:7 compatibility each dose group also can decrease renal index, UN, and Cr levels with different degrees and improve the pathological changes of pancreatic tissue and kidney tissue in diabetic nephropathy rats with different degrees (P?<?0.01 or P?<?0.05 or P?>?0.05).

Conclusion

The 3:7 ratio of Astragalus total saponins and Curcumin can achieve the treatment and protection effects on diabetic nephropathy rats by improve the glycometableolism, insulin resistance, lipid metableolism, oxidative stress levels, and pathological changes.  相似文献   

16.
Disruption of the permeability barrier results in an increase in cholesterol synthesis in the epidermis. Inhibition of cholesterol synthesis impairs the repair and maintenance of barrier function. The increase in epidermal cholesterol synthesis after barrier disruption is due to an increase in the activity of epidermal HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase. To determine the mechanism for this increase in enzyme activity, in the present study we have shown by Western blot analysis that there is a 1.5-fold increase in the mass of HMG-CoA reductase after acute disruption of the barrier with acetone. In a chronic model of barrier disruption, essential fatty acid deficiency, there is a 3-fold increase in the mass of HMG-CoA reductase. Northern blot analysis demonstrated that after acute barrier disruption with acetone or tape-stripping, epidermal HMG-CoA reductase mRNA levels are increased. In essential fatty acid deficiency, epidermal HMG-CoA reductase mRNA levels are increased 3-fold. Thus, both acute and chronic barrier disruption result in increases in epidermal HMG-CoA reductase mRNA levels which could account for the increase in HMG-CoA reductase mass and activity. Additionally, both acute and chronic barrier disruption increase the number of low density lipoprotein (LDL) receptors and LDL receptor mRNA levels in the epidermis. Moreover, epidermal apolipoprotein E mRNA levels are increased by both acute and chronic perturbations in the barrier. Increases in these proteins in response to barrier disruption may allow for increased lipid synthesis and transport between cells and facilitate barrier repair.  相似文献   

17.
18.
19.
Hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase activities and cholesterol content in the liver of athymic mice either bearing or not an implanted human lung mucoepidormoid carcinoma (HLMC) and in the neoplasic tissue, were analyzed. The properties of the HMG-CoA reductase of HLMC grown in nude mice and those ones found in the liver of these animals, sacrificed either at mid-light or mid-dark, were similar. The hepatic reductase activity was found to be four- to five-fold greater at mid-dark than at mid-light (462±141 vs. 123±22 pmol min−1 mg protein−1). Since the Km value was not modified, the mid-dark activity could be due to an increase in the amount of enzyme. In contrast, HLMC reductase activity and cholesterol content showed similar values at mid-light and mid-dark points. HLMC reductase does not appear to have any diurnal variation and the cholesterol synthesis and content seems to be independent of food intake. HLMC-bearing nude mice undergo several alterations in the biosynthesis and homeostasis of cholesterol. Hypocholesterolemia, lower hepatic cholesterol content and higher HMG-CoA reductase activity are characteristic of host mice.  相似文献   

20.
We examined cholesterol homeostasis in mice with the two major cholesterol transport pathways for catabolism interrupted by disrupting abca1, lcat, or both. Plasma HDL markedly decreased in these genotype but LDL/VLDL decreased only in the double deficiency. Fractional catabolic rate of HDL increased in the order of wild type < abca1(?/?) = lcat(?/?) < abca1(?/?)lcat(?/?). Cholesterol accumulated in the liver by disrupting either gene and more by the double disruption. HDL biogenesis by primary-cultured hepatocytes was negligible in the abca1 deficiency and substantially reduced in the lcat deficiency. Secretion of LDL/VLDL was also decreased in these cells but to a less extent. Cholesterol content in the hepatocytes was in a reciprocal order to lipoprotein generation. Expression of hepatic mRNA of the sterol-related genes reflected the cellular cholesterol increase, such as decrease in SREBP2 and HMG-CoA reductase and increase in apoA-I, apoE, and ABCG1. Cholesterol decreased in the steroidogenic organs by disruption of either gene resulting from low-plasma HDL. Cholesterol in other peripheral tissues generally decreased under normal chow feeding, and interestingly, it was recovered by high-cholesterol feeding, including the cholesterol content in the brain. No apparent vascular lipid deposition was observed in any genotype. Deletion of the two major factors in “reverse cholesterol transport” may not directly result in severe cholesterol transport stagnation in the body of mouse. Other compensatory pathways may back up cholesterol transport among the organs and tissues even when these pathways are impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号