首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniparental inheritance of mitochondria dominates among sexual eukaryotes. However, little is known about the mechanisms and genetic determinants. We have investigated the role of the plant pathogen Ustilago maydis genes lga2 and rga2 in uniparental mitochondrial DNA (mtDNA) inheritance during sexual development. The lga2 and rga2 genes are specific to the a2 mating-type locus and encode small mitochondrial proteins. On the basis of identified sequence polymorphisms due to variable intron numbers in mitochondrial genotypes, we could demonstrate that lga2 and rga2 decisively influence mtDNA inheritance in matings between a1 and a2 strains. Deletion of lga2 favored biparental inheritance and generation of recombinant mtDNA molecules in combinations in which inheritance of mtDNA of the a2 partner dominated. Conversely, deletion of rga2 resulted in predominant loss of a2-specific mtDNA and favored inheritance of the a1 mtDNA. Furthermore, expression of rga2 in the a1 partner protected the associated mtDNA from elimination. Our results indicate that Lga2 in conjunction with Rga2 directs uniparental mtDNA inheritance by mediating loss of the a1-associated mtDNA. This study shows for the first time an interplay of mitochondrial proteins in regulating uniparental mtDNA inheritance.  相似文献   

2.
3.
4.
GTPase-activating proteins for Cdc42   总被引:2,自引:0,他引:2       下载免费PDF全文
The Rho-type GTPase, Cdc42, has been implicated in a variety of functions in the yeast life cycle, including septin organization for cytokinesis, pheromone response, and haploid invasive growth. A group of proteins called GTPase-activating proteins (GAPs) catalyze the hydrolysis of GTP to GDP, thereby inactivating Cdc42. At the time this study began, there was one known GAP, Bem3, and one putative GAP, Rga1, for Cdc42. We identified another putative GAP for Cdc42 and named it Rga2 (Rho GTPase-activating protein 2). We confirmed by genetic and biochemical criteria that Rga1, Rga2, and Bem3 act as GAPs for Cdc42. A detailed characterization of Rga1, Rga2, and Bem3 suggested that they regulate different subsets of Cdc42 function. In particular, deletion of the individual GAPs conferred different phenotypes. For example, deletion of RGA1, but not RGA2 or BEM3, caused hyperinvasive growth. Furthermore, overproduction or loss of Rga1 and Rga2, but not Bem3, affected the two-hybrid interaction of Cdc42 with Ste20, a p21-activated kinase (PAK) kinase required for haploid invasive growth. These results suggest Rga1, and possibly Rga2, facilitate the interaction of Cdc42 with Ste20 to mediate signaling in the haploid invasive growth pathway. Deletion of BEM3 resulted in cells with severe morphological defects not observed in rga1Δ or rga2Δ strains. These data suggest that Bem3 and, to a lesser extent, Rga1 and Rga2 facilitate the role of Cdc42 in septin organization. Thus, it appears that the GAPs play a role in modulating specific aspects of Cdc42 function. Alternatively, the different phenotypes could reflect quantitative rather than qualitative differences in GAP activity in the mutant strains.  相似文献   

5.
Infection of cells with herpes simplex virus type 1 (HSV-1) induces high levels of deoxypyrimidine triphosphatase. The majority of the enzyme activity is found in infected cell nuclei. A similar activity is induced by HSV type 2 (HSV-2) which, in contrast to the HSV-1 enzyme, fractionates to more than 99% in the soluble cytoplasmic extract. Of a series of temperature-sensitive mutants of HSV-1 studied, only the immediate-early mutants in complementation group 1-2 (strain 17 mutants tsD and tsK and strain KOS mutant tsB2) induced reduced levels of triphosphatase at nonpermissive temperature. Of a series of temperature-sensitive mutants of HSV-2 strain HG52, ts9 and ts13 failed to induce wild-type levels of the enzyme at nonpermissive temperature; ts9 was the most defective mutant with regard to triphosphatase expression of both herpes simplex virus serotypes. After shift-up from permissive to nonpermissive temperature, triphosphatase activity in cells infected with ts9 decreased rapidly, whereas all other mutants continued to exhibit enzyme levels comparable with controls kept at the permissive temperature. The type 1-specific nuclear expression of the triphosphatase was mapped physically by the use of HSV-1 x HSV-2 intertypic recombinants, based on enzyme levels different by more than two orders of magnitude found in nuclei of HSV-1- and HSV-2-infected cells. The locus for the type-specific expression maps between 0.67 and 0.68 fractional length on the HSV genome.  相似文献   

6.
【目的】克隆表达高致病性2型猪链球菌05ZYH33株的SspA截短型基因,验证其是否具有酶学活性,并构建该基因的缺失突变株细菌,探讨其在2型猪链球菌致病过程中所起的作用【。方法】构建SS2的SspA截短型基因05SSU0811原核表达质粒,表达并纯化05SSU0811蛋白,运用丝氨酸蛋白酶底物Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide(pNa),通过显色反应检测表达产物的酶学活性;运用同源重组技术敲除05SSU0811基因,多重交叉PCR筛选敲除株并测序鉴定,动物试验分析05SSU0811基因缺失对细菌毒力的影响。【结果】成功表达并纯化05SSU0811蛋白,浓度约为3.5 g/L。丝氨酸蛋白酶活性测定试验证实其具有酶学活性;获得05SSU0811基因缺失突变株,小鼠攻毒试验表明,野生株攻毒的20只小鼠全部死亡,基因缺失突变株攻毒组死亡9只,死亡率45%,两组间死亡率有显著性差异。表明05SSU0811基因缺失的菌株毒力较野生株明显下降。【结论】05SSU0811基因编码的截短型丝氨酸蛋白酶仍然具有酶学活性,SS2的截短型基因SspA在高致病性2型猪链球菌的致病性方面具有一定作用。  相似文献   

7.
Cellular and mitochondrial metabolite levels were measured in yeast TCA cycle mutants (sdh2Δ or fum1Δ) lacking succinate dehydrogenase or fumarase activities. Cellular levels of succinate relative to parental strain levels were found to be elevated ~8-fold in the sdh2Δ mutant and ~4-fold in the fum1Δ mutant, and there was a preferential increase in mitochondrial levels in these mutant strains. The sdh2Δ and fum1Δ strains also exhibited 3-4-fold increases in expression of Cit2, the cytosolic form of citrate synthase that functions in the glyoxylate pathway. Co-disruption of the SFC1 gene encoding the mitochondrial succinate/fumarate transporter resulted in higher relative mitochondrial levels of succinate and in substantial reductions of Cit2 expression in sdh2Δsfc1Δ and fum1Δsfc1Δ strains as compared with sdh2Δ and fum1Δ strains, suggesting that aberrant transport of succinate out of mitochondria mediated by Sfc1 is related to the increased expression of Cit2 in sdh2Δ and fum1Δ strains. A defect (rtg1Δ) in the yeast retrograde response pathway, which controls expression of several mitochondrial proteins and Cit2, eliminated expression of Cit2 and reduced expression of NAD-specific isocitrate dehydrogenase (Idh) and aconitase (Aco1) in parental, sdh2Δ, and fum1Δ strains. Concomitantly, co-disruption of the RTG1 gene reduced the cellular levels of succinate in the sdh2Δ and fum1Δ strains, of fumarate in the fum1Δ strain, and citrate in an idhΔ strain. Thus, the retrograde response is necessary for maintenance of normal flux through the TCA and glyoxylate cycles in the parental strain and for metabolite accumulation in TCA cycle mutants.  相似文献   

8.
OxyR regulates the expression of the majority of H(2)O(2) responses in Gram-negative organisms. In a previous study we reported the OxyR-dependent derepression of catalase expression in the human pathogen Neisseria gonorrhoeae. In the present study we used microarray expression profiling of N. gonorrhoeae wild-type strain 1291 and an oxyR mutant strain to define the OxyR regulon. In addition to katA (encoding catalase), only one other locus displayed a greater than two-fold difference in expression in the wild type : oxyR comparison. This locus encodes an operon of two genes, a putative peroxiredoxin/glutaredoxin (Prx) and a putative glutathione oxidoreductase (Gor). Mutant strains were constructed in which each of these genes was inactivated. A previous biochemical study in Neisseria meningitidis had confirmed function of the glutaredoxin/peroxiredoxin. Assay of the wild-type 1291 cell free extract confirmed Gor activity, which was lost in the gor mutant strain. Phenotypic analysis of the prx mutant strain in H(2)O(2) killing assays revealed increased resistance, presumably due to upregulation of alternative defence mechanisms. The oxyR, prx and gor mutant strains were deficient in biofilm formation, and the oxyR and prx strains had decreased survival in cervical epithelial cells, indicating a key role for the OxyR regulon in these processes.  相似文献   

9.
G. Bakkeren  J. W. Kronstad 《Genetics》1996,143(4):1601-1613
The MAT region of Ustilago hordei, a bipolar barley pathogen, harbors distinct mating functions (a and b loci). Here, we show that the b locus is essential for mating and pathogenicity, and can induce pathogenicity when introduced into a strain carrying a b locus of opposite specificity. Transformation experiments using components of the a1 locus and analysis of resulting dual mating phenotypes revealed that this locus harbors a pheromone receptor gene (Uhpra1) and a pheromone gene (Uhmfa1). These U. hordei a1 genes, when introduced by transformation, are necessary and sufficient to make U. maydis, a tetrapolar corn pathogen, intercompatible with U. hordei MAT-2, but not MAT-1, strains. U. hordei strains transformed with the U. maydis a1 locus also become intercompatible with U. maydis a2, but not a1, strains. The interspecies hybrids produced dikaryotic hyphae but were not fully virulent on either corn or barley. Partial, natural intercompatibility was shown to exist between the sugarcane smut U. scitaminea and both U. hordei and U. maydis. These results show that the signal transduction pathway for mating responses is conserved between different smut species. We conclude that, apart from intraspecies compatibility, the Ustilago a locus also dictates intercompatibility in this group of fungi.  相似文献   

10.
11.
Group A streptococci (GAS) produce several secreted products that are thought to enhance pathogenicity by facilitating spread of the organisms through host tissues. Two such products, streptolysin O (SLO) and NAD+-glycohydrolase, appear to be functionally linked, in that SLO is required for transfer of NAD+-glycohydrolase into epithelial cells. However, the effects of NAD+-glycohydrolase on host cells are largely unexplored. We now report that SLO-mediated delivery of NAD+-glycohydrolase to the cytoplasm of human keratinocytes results in major changes in host cell biology that enhance GAS pathogenicity. We derived isogenic mutant strains deficient in the expression of SLO, NAD+-glycohydrolase or both proteins in the background of a virulent, M-type 3 strain of GAS. All three mutant strains were internalized by human keratinocytes more rapidly and in higher numbers than were organisms from the wild-type strain. Association of the mutant strains with keratinocytes also resulted in reduced cytotoxicity and reduced keratinocyte apoptosis compared with wild-type GAS. These results support a model in which NAD+-glycohydrolase contributes to GAS pathogenesis by modulating host cell signalling pathways to inhibit GAS internalization, to augment SLO-mediated cytotoxicity and to induce keratinocyte apoptosis. We conclude that NAD+-glycohydrolase is a novel type of bacterial toxin that acts intracellularly in the infected host to enhance the survival and proliferation of an extracellular pathogen.  相似文献   

12.
玉米弯孢叶斑病菌ATMT突变株构建及致病力分析   总被引:1,自引:0,他引:1  
利用农杆菌介导的基因转化(Agrobacterium-mediated transformation,ATMT)技术,转化玉米弯孢叶斑病菌 (Curvularia lunata),共获得转化子1 454个。对其中菌落形态、生长速率等性状有显著变化的8个突变株进行分析。通过离体叶片接种进行筛选,发现4个突变株致病性降低,2个突变株致病性增强。通过测定生长速率、产孢量及细胞壁降解酶活性发现,其中致病性减弱的突变株,其产孢量均有所下降甚至不产孢,突变株的PG酶活性普遍增强,但Cx酶活性没有明显变化,而2株强致病性突变株的Cx酶活性明显增强。  相似文献   

13.
Virulent strains of the facultative intracellular bacterium Rhodococcus equi isolated from young horses (foals) with R. equi pneumonia, carry an 80-90 kb virulence plasmid and express a highly immunogenic 15-17 kDa protein of unknown function called VapA (Virulence Associated Protein A). Recent sequencing of the virulence plasmid identified a putative pathogenicity island encoding a novel family of seven Vap proteins including VapA. These proteins exhibit a significant sequence similarity to each other but have no homologues in other organisms. In this study, we describe the construction of an R. equi mutant lacking a 7.9 kb DNA region spanning five vap genes (vapA, -C, -D, -E and -F ). This vap locus mutant was attenuated for virulence in mice as it was unable to replicate in vivo and was rapidly cleared in comparison to the virulent wild-type strain. Complementation analysis of the vap locus mutant showed that expression of vapA alone could restore full virulence, whereas expression of vapC, -D and -E could not. We subsequently constructed an R. equi strain lacking only the vapA gene and found that it was attenuated for growth in vivo to the same degree as the vap locus mutant. Unlike wild-type R. equi which replicates intracellularly, both of the mutant strains exhibited a growth defect in macrophages although their attachment to the macrophages was unaffected. These studies provide the first proof of a role for vapA in the virulence of R. equi, and demonstrate that its presence is essential for intracellular growth in macrophages.  相似文献   

14.
15.
16.
Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease and resulting in high mortality. In order to determine the importance of the cAMP signaling pathway for virulence, three genes encoding putative elements of the pathway have been cloned and characterized: the adenylate cyclase gene acyA, and gpaA and gpaB, both of which encode alpha subunits of heterotrimeric G proteins. The acyA and gpaB genes were each deleted in A. fumigatus. Both mutants showed reduced conidiation, with the deltaacyA mutant producing very few conidia. The growth rate of the deltaacyA mutant was also reduced, in contrast to that of the deltagpaB mutant. Addition of 10 mM dibutyryl-cAMP to the culture medium completely restored the wild-type phenotype in both mutant strains. To study the influence of GPAB on the expression of the gene pksP, which encodes a virulence factor that is involved in pathogenicity, a pksPp-lacZ gene fusion was generated and integrated as a single copy at the pyrG gene locus of both the parental strain and the deltagpaB mutant strain. The deltagpaB mutant showed reduced expression of the pksPp-lacZ reporter gene relative to that in the parental strain. In mycelia of both the parental strain and the deltagpaB mutant pksPp-lacZ expression was increased when isobutyl-methyl-xanthine, an inhibitor of intracellular phosphodiesterases, was added to the medium. The survival rate of conidia after ingestion by human monocyte-derived macrophages was also determined. The killing rate for conidia from deltaacyA and deltagpaB strains was significantly higher than that for wild-type conidia. Taken together, these findings suggest that cAMP triggers a system that protects A. fumigatus from the effects of immune effector cells of the host.  相似文献   

17.
灰葡萄孢分生孢子产生相关基因的克隆及功能分析   总被引:3,自引:0,他引:3  
[目的]克隆灰葡萄孢分生孢子产生相关基因,并研究其功能,为进一步研究灰葡萄孢分生孢子产生机理和灰葡萄孢侵染及致病机理奠定基础.[方法]通过筛选灰葡萄孢ATMT突变体库,获得一株不能产生分生孢子的突变菌株BCt78,采用PCR和Southern Blotting技术,对突变菌株BCt78进行分子鉴定.利用TAIL-PCR技术获得T-DNA插入位点的侧翼序列;将所获得侧翼序列与灰葡萄孢基因组数据库中的已知基因序列进行BLAST分析,推测出T-DNA的插入位点;通过PCR进一步验证T-DNA的插入位点,利用RT-PCR技术确定突变基因;最后对突变菌株的菌落形态、生长速度、胞壁降解酶活力、粗毒素的生物活性、对番茄叶片的致病能力及部分致病相关基因的表达情况进行研究.[结果]TAIL-PCR结果证实T-DNA插入到灰葡萄孢BCIG 12707.1基因的ATG起始密码子区;RT-PCR结果证实突变基因为BCIG_12707.1,该基因DNA全长为135 bp,编码一个44个氨基酸的假定蛋白(Hypothetical protein).突变菌株在PDA培养基上菌落呈灰白色,生长速度减慢,不能产生分生孢子及菌核;对番茄叶片的致病性增强,且胞壁降解酶(PG、PMG和Cx)活力增强;突变菌株中参与细胞壁降解的角质酶基因cutA和多聚半乳糖醛酸酶基因Bepg1,信号转导途径基因(PKA1、PKA2、Bac、Bmp3),产毒素基因BcBOT2(Sesquiterpene synthase),漆酶基因Lac1,跨膜蛋白基因Btp1表达都增强.[结论]BC1G_ 12707.1基因在灰葡萄孢分生孢子产生、菌核形成及致病力等方面起重要作用.  相似文献   

18.
Catabolic dehydroquinase, which functions in the inducible quinic acid catabolic pathway of Neurospora crassa, has been purified from wild type (74-A) and three mutants in the qa gene cluster. The mutant strains were: 105c, a temperature-sensitive constitutive mutant in the qa-1 regulatory locus; M-16, a qa-3 mutant deficient in quinate dehydrogenase activity; and 237, a leaky qa-2 mutant which possess very low levels of catabolic dehydroquinase activity. The enzymes purified from strains 74-A, 105c, and M-16 are identical with respect to behavior during purification, specific activity, electrophoretic behavior, stability, molecular weight, subunit structure, immunological cross-reactivity, and amino acid content. The mutant enzyme from strain 237 is 1,500-fold less active and appears to have a slightly different amino acid content. It is identical by a number of the other criteria listed above and is presumed to be a mutant at or near the enzyme active site. These data demonstrate that the qa-1 gene product is not involved in the posttranslational expression of enzyme activity. The biochemical identity of catabolic dehydroquinase isolated from strains 105c and M-16 with that from wild type also demonstrates that neither the inducer, quinic acid, nor other enzymes encoded in the qa gene cluster are necessary for the expression of activity. Therefore the combined genetic and biochemical data on the qa system continue to support the hypothesis that the qa-1 regulatory protein acts as a positive initiator of qa enzyme synthesis.  相似文献   

19.
Zheng XD  Lee RT  Wang YM  Lin QS  Wang Y 《The EMBO journal》2007,26(16):3760-3769
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Delta mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery.  相似文献   

20.
本研究通过杂交构建肺形侧耳同核异质菌株N1M1、N1M2和同质异核菌株N1M1、N2M1,比较菌丝形态与生长速度、营养成分以及常见的细胞核基因与线粒体基因的表达量,分析线粒体基因对肺形侧耳菌丝的影响,探讨线粒体基因与核基因的相互作用。由菌丝生长情况可知N1M1和N1M2菌丝形态相似,生长速度差异不显著,N1M1和N2M1菌丝形态差异大,生长速度差异极显著,在菌丝形态与生长速度上细胞核基因作用大于线粒体基因。进一步检测菌株中的主要营养成分发现必需氨基酸与总水解氨基酸含量差异显著,菌株N1M2蛋白含量显著高于N1M1,N1M1维生素C含量是N1M2的1.67倍,菌株N2M1多糖和蛋白含量显著高于N1M1,铁和维生素C含量显著低于N1M1。所以细胞核基因、线粒体基因都能影响肺形侧耳营养成分含量。检测同核异质菌株N1M1、N1M2的7个细胞核常见基因的表达情况发现,N1M2菌丝中6个细胞核基因的表达量都显著高于N1M1,这表明肺形侧耳线粒体基因的不同会影响核基因的表达;同质异核菌株N1M1、N2M1的14个线粒体普通编码蛋白基因表达差异显著,这说明线粒体基因的表达量会因核基因的不同有所差异。综上,肺形侧耳线粒体基因和细胞核基因能够相互影响,共同作用于生命活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号