首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned Pfnek-1, a gene encoding a novel protein kinase from the human malaria parasite Plasmodium falciparum. This enzyme displays maximal homology to the never-in-mitosis/Aspergillus (NIMA)/NIMA-like kinase (Nek) family of protein kinases, whose members are involved in eukaryotic cell division processes. Similar to other P. falciparum protein kinases and many enzymes of the NIMA/Nek family, Pfnek-1 possesses a large C-terminal extension in addition to the catalytic domain. Bacterially expressed recombinant Pfnek-1 protein is able to autophosphorylate and phosphorylate a panel of protein substrates with a specificity that is similar to that displayed by other members of the NIMA/Nek family. However, the FXXT motif usually found in NIMA/Nek protein kinases is substituted in Pfnek-1 by a SMAHS motif, which is reminiscent of a MAP/ERK kinase (MEK) activation site. Mutational analysis indicates that only one of the serine residues in this motif is essential for Pfnek-1 kinase activity in vitro. We show (a) that recombinant Pfnek-1 is able to specifically phosphorylate Pfmap-2, an atypical P. falciparum MAPK homologue, in vitro, and (b) that coincubation of Pfnek-1 and Pfmap-2 results in a synergistic increase in exogenous substrate labelling. This suggests that Pfnek-1 may be involved in the modulation of MAPK pathway output in malaria parasites. Finally, we demonstrate that recombinant Pfnek-1 can be used in inhibition assays to monitor the effect of kinase inhibitors, which opens the way to the screening of chemical libraries aimed at identifying potential new antimalarials.  相似文献   

2.
The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen-activated protein kinase (MAPK) homologues, pfmap-1 and pfmap-2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model Plasmodium berghei recently showed the map-2 gene to be dispensable for asexual growth and gametocytogenesis, but essential for male gametogenesis in the mosquito vector. Here, we demonstrate by using a reverse genetics approach that the map-2 gene is essential for completion of the asexual cycle of P. falciparum, an unexpected result in view of the non-essentiality of the orthologous gene for P. berghei erythrocytic schizogony. This validates Pfmap-2 as a potential target for chemotherapeutic intervention. In contrast, the other P. falciparum MAPK, Pfmap-1, is required neither for in vitro schizogony and gametocytogenesis in erythrocytes, nor for gametogenesis and sporogony in the mosquito vector. However, Pfmap-2 protein levels are elevated in pfmap-1(-) parasites, suggesting that Pfmap-1 fulfils an important function in asexual parasites that necessitates compensatory adaptation in parasites lacking this enzyme.  相似文献   

3.
4.
MAPK cascades in plant defense signaling.   总被引:21,自引:0,他引:21  
The Arabidopsis genome encodes approximately 20 different mitogen-activated protein kinases (MAPKs) that are likely to be involved in growth, development and responses to endogenous and environmental cues. Several plant MAPKs are activated by a variety of stress stimuli, including pathogen infection, wounding, temperature, drought, salinity, osmolarity, UV irradiation, ozone and reactive oxygen species. Recent gain-of-function studies show that two tobacco MAPKs induce the expression of defense genes and cause cell death. By contrast, loss-of-function studies of other MAPK pathways revealed negative regulation of disease resistance. This 'push-and-pull' regulation by different MAPK pathways might provide a more precise control of plant defense responses.  相似文献   

5.
6.
7.
MAPK phosphatases--regulating the immune response   总被引:2,自引:0,他引:2  
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are protein phosphatases that dephosphorylate both the phosphothreonine and phosphotyrosine residues on activated MAPKs. Removal of the phosphates renders MAPKs inactive, effectively halting their cellular function. In recent years, evidence has emerged that, similar to MAPKs, MKPs are pivotal in the regulation of immune responses. By deactivating MAPKs, MKPs can modulate both innate and adaptive immunity. A number of immunomodulatory agents have been found to influence the expression of MKP1 in particular, highlighting the central role of this phosphatase in immune regulation. This Review discusses the properties, function and regulation of MKPs during immune responses.  相似文献   

8.
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) participate in signaling initiated by a wide variety of extracellular stimuli. MAPKs are most commonly activated by a series of phosphorylation events in which one kinase phosphorylates another, the “MAPK cascade”. The cascade concludes with the dual phosphorylation of MAPKs on a conserved Thr-X-Tyr motif. In the case of the p38 MAPK, an exception to this paradigm has been found when signaling via the T cell antigen receptor (TCR). Rather than trigger the MAPK cascade, TCR-mediated stimulation activates proximal tyrosine kinases, which results in the phosphorylation of p38 on a noncanonical activating residue, Tyr-323. This phosphorylation activates p38 to phosphorylate third party substrates as well as its own Thr-X-Tyr motif. Here we discuss the structural and functional implications of this alternative p38 activation pathway, which may provide a new target for tissue-specific pharmacologic inhibition.  相似文献   

10.
Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.  相似文献   

11.
MEK kinase 2 (MEKK2) is a 70-kDa protein serine/threonine kinase that has been shown to function as a mitogen-activated protein kinase (MAPK) kinase kinase. MEKK2 has its kinase domain in the COOH-terminal moiety of the protein. The NH(2)-terminal moiety of MEKK2 has no signature motif that would suggest a defined regulatory function. Yeast two-hybrid screening was performed to identify proteins that bind MEKK2. Protein kinase C-related kinase 2 (PRK2) was found to bind MEKK2; PRK2 has been previously shown to bind RhoA and the Src homology 3 domain of Nck. PRK2 did not bind MEKK3, which is closely related to MEKK2. The MEKK2 binding site maps to amino acids 637-660 in PRK2, which is distinct from the binding sites for RhoA and Nck. This sequence is divergent in the closely related kinase PRK1, which did not bind MEKK2. In cells, MEKK2 and PRK2 are co-immunoprecipitated and PRK2 is activated by MEKK2. Similarly, purified recombinant MEKK2 activated PRK2 in vitro. MEKK2 activation of PRK2 is independent of MEKK2 regulation of the c-Jun NH(2)-terminal kinase pathway. MEKK2 activation of PRK2 results in a bifurcation of signaling for the dual control of MAPK pathways and PRK2 regulated responses.  相似文献   

12.
Xenopus oocytes and eggs provide a dramatic example of how the consequences of p42 mitogen-activated protein kinase (p42 MAPK) activation depend on the particular context in which the activation occurs. In oocytes, the activation of Mos, MEK, and p42 MAPK is required for progesterone-induced Cdc2 activation, and activated forms of any of these proteins can bring about Cdc2 activation in the absence of progesterone. However, in fertilized eggs, activation of the Mos/MEK/p42 MAPK pathway has the opposite effect, inhibiting Cdc2 activation and causing a G2 phase delay or arrest. In the present study, we have investigated the mechanism and physiological significance of the p42 MAPK-induced G2 phase arrest, using Xenopus egg extracts as a model system. We found that Wee1-depleted extracts were unable to arrest in G2 phase in response to Mos, and adding back Wee1 to the extracts restored their ability to arrest. This finding formally places Wee1 downstream of Mos/MEK/p42 MAPK. Purified recombinant p42 MAPK was found to phosphorylate recombinant Wee1 in vitro at sites that are phosphorylated in extracts. Phosphorylation by p42 MAPK resulted in a modest ( approximately 2-fold) increase in the kinase activity of Wee1 toward Cdc2. Titration experiments in extracts demonstrated that a twofold increase in Wee1 activity is sufficient to cause the delay in mitotic entry seen in Mos-treated extracts. Finally, we present evidence that the negative regulation of Cdc2 by Mos/MEK/p42 MAPK contributes to the presence of an unusually long G2 phase in the first mitotic cell cycle. Prematurely inactivating p42 MAPK in egg extracts resulted in a corresponding hastening of the first mitosis. The negative effect of p42 MAPK on Cdc2 activation may help ensure that the first mitotic cell cycle is long enough to allow karyogamy to be accomplished successfully.  相似文献   

13.
In common with other eukaryotes, plants utilize mitogen-activated protein kinase (MAPK) cascades to mediate responses to a wide variety of stimuli. In contrast to other eukaryotes, plants have an unusually large number of MAPK components, such as more than 20 MAPKs, 10 MAPK kinases (MAPKKs), and 60 MAPKK kinases (MAPKKKs) in Arabidopsis (MAPK Group (2002) Trends Plant Sci. 7, 301-308). Presently it is mostly unknown how MAPK signaling specificity is generated in plants. Here we have isolated OMTK1 (oxidative stress-activated MAP triple-kinase 1), a novel MAPKKK from alfalfa (Medicago sativa). In plant protoplasts, OMTK1 showed basal kinase activity and was found to induce cell death. Among a panel of hormones and stresses tested, only H(2)O(2) was found to activate OMTK1. Out of four MAPKs, OMTK1 specifically activated MMK3 resulting in an increased cell death rate. Pull-down analysis between recombinant proteins indicated that OMTK1 directly interacts with MMK3 and that OMTK1 and MMK3 are part of a protein complex in vivo. These results indicate that OMTK1 plays a MAPK scaffolding role and functions in activation of H(2)O(2) -induced cell death in plants.  相似文献   

14.
Joshi RK  Kar B  Nayak S 《Bioinformation》2011,7(4):180-183
Mitogen activated protein kinase (MAPK) cascades are universal signal transduction modules that play crucial role in plant growth and development as well as biotic and abiotic stress responses. 20 and 17 MAPKs have been characterized in Arabidopsis and rice respectively, which are used for identification of the putative MAPKs in other higher plants. However, no MAPK gene sequences have yet been characterized for asexually reproducing plants. We describe the analysis of MAPK EST sequences from Curcuma longa (an asexually reproducible plant of great medicinal and economic significance). The four Curcuma MAPKs contains all 11 MAPK conserved domains and phosphorylation-activation motif, TEY. Phylogenetic analysis grouped them in the subgroup A and C as identified earlier for Arabidopsis. The Curcuma MAPKs identified showed high sequence homology to rice OsMPK3, OsMPK4 and OsMPK5 suggesting the presence of similar key element in signaling biotic and abiotic stress responses. Although further in vivo and in vitro analysis are required to establish the physiological role of Curcuma MAPKs, this study provides the base for future research on diverse signaling pathways mediated by MAPKs in Curcuma longa as well as other asexually reproducing plants.  相似文献   

15.
Yue J  Ferrell JE 《Current biology : CB》2004,14(17):1581-1586
The ERK1/ERK2 MAP kinases (MAPKs) are transiently activated during mitosis, and MAPK activation has been implicated in the spindle assembly checkpoint and in establishing the timing of an unperturbed mitosis. The MAPK activator MEK1 is required for mitotic activation of p42 MAPK in Xenopus egg extracts; however, the identity of the kinase that activates MEK1 is unknown. Here we have partially purified a Cdc2-cyclin B-induced MEK-activating protein kinase from mitotic Xenopus egg extracts and identified it as the Mos protooncoprotein, a MAP kinase kinase kinase present at low levels in mitotic egg extracts, early embryos, and somatic cells. Immunodepletion of Mos from interphase egg extracts was found to abolish Delta90 cyclin B-Cdc2-stimulated p42 MAPK activation. In contrast, immunodepletion of Raf-1 and B-Raf, two other MEK-activating kinases present in Xenopus egg extracts, had little effect on cyclin-stimulated p42 MAPK activation. Immunodepletion of Mos also abolished the transient activation of p42 MAPK in cycling egg extracts. Taken together, these data demonstrate that Mos is responsible for the mitotic activation of the p42 MAPK pathway in Xenopus egg extracts.  相似文献   

16.
The Pto kinase mediates resistance to bacterial speck disease in tomato by activating host defenses upon recognition of Pseudomonas syringae pv. tomato strains expressing the AvrPto or AvrPtoB proteins. Previous gene-silencing experiments have indicated that mitogen activated protein kinase (MAPK) cascades play a key role downstream of the Pto kinase to activate host defense responses. Here we use biochemical methods to demonstrate that two tomato MAPKs, LeMPK2 and LeMPK3, are activated in leaves in a Pto-specific manner upon expression of AvrPto and AvrPtoB. We show that these same MAPKs are activated upon overexpression of LeMAPKKKalpha, a protein previously demonstrated to be involved in Pto-mediated immunity. We identified two phylogenetically unrelated MAPK kinases (LeMKK2 and LeMKK4) that when overexpressed in leaves elicit cell death and activate LeMPK2 and LeMPK3. In vitro analysis demonstrated that LeMKK2 and LeMKK4 each phosphorylate the same subset of three MAPKs. Together these data provide biochemical evidence for the involvement of MAPK cascades in Pto-mediated resistance.  相似文献   

17.
Mitogen-activated protein kinase (MAPK) pathways are well conserved in most organisms, from yeast to humans. The principal components of these pathways are MAP kinases whose activity is regulated by phosphorylation, implicating various MAPK protein effectors-in particular, protein phosphatases that inactivate MAPKs by dephosphorylation. The molecular basis of binding specificity of such regulatory phosphatases to MAPKs is poorly understood. To try to pinpoint potential functional regions within the sequences and to help identify new family members, we have applied a multimotif pattern-recognition approach to characterize two MAPK phosphatase subfamilies (tyrosine-specific and dual specificity) that are crucial in the regulation of MAPKs. We built "fingerprints" for these two subfamilies that are unique to, and highly discriminatory for, each group of proteins. The fingerprints were used in a genome-wide screen, identifying more than 80 MAPK phosphatase domains, several of which were in partial sequences or unclassified proteins. We confirmed experimentally that one predicted MAPK phosphatase orthologue in Xenopus binds to ERK1/2, suggesting a role in MAPK signaling and thus supporting our functional predictions. Further analysis, mapping the fingerprints on the three-dimensional structure of MAPK phosphatases, revealed that some of the fingerprint motifs reside in the N-terminal noncatalytic regions coinciding with reported MAPK binding sites, while others lie within the catalytic phosphatase domain. These results also suggest the presence of putative allosteric sites in the catalytic region for modulation of protein-protein interactions, and provide a framework for future experimental validation.  相似文献   

18.
Mitogen-activated protein kinases (MAPKs) play pivotal roles in growth, development, differentiation, and apoptosis. The exact role of a given MAPK in these processes is not fully understood. This question could be addressed using active forms of these enzymes that are independent of external stimulation and upstream regulation. Yet, such molecules are not available. MAPK activation requires dual phosphorylation, on neighboring Tyr and Thr residues, catalyzed by MAPK kinases (MAPKKs). It is not known how to force MAPK activation independent of MAPKK phosphorylation. Here we describe a series of nine hyperactive (catalytically and biologically), MAPKK-independent variants of the MAPK Hog1. Each of the active molecules contains just a single point mutation. Six mutations are in the conserved L16 domain of the protein. The active Hog1 mutants were obtained through a novel genetic screen that could be applied for isolation of active MAPKs of other families. Equivalent mutations, introduced to the human p38alpha, rendered the enzyme active even when produced in Escherichia coli, showing that the mutations increased the intrinsic catalytic activity of p38. It implies that the activating mutations could be directly used for production of active forms of MAPKs from yeasts to humans and could open the way to revealing their biological functions.  相似文献   

19.
20.
Plant stress hormones, such as jasmonates (JAs) and ethylene (ET) are essential in plant defence against stress conditions. JAs are used in cosmetics and food flavouring, and the recently demonstrated anti-cancer activity of JAs highlights their potential in health protection. It reinforces the need for a better understanding of biosynthetic regulation of JAs. Which mechanisms are involved in the regulation of the biosynthesis of JAs and ET? Production of stress hormones is induced in plants after wounding or herbivore attack. ET is a gaseous compound and plant JAs are oxylipins structurally similar to prostaglandins that are induced upon inflammation or injury in mammals. Wounding activates protein phosphorylation cascades involving mitogen-activated protein kinases (MAPKs). MAPKs regulate ET production. The induction of JA biosynthesis was suggested to require MAPK activation; however the defined roles of MAPKs in JA production remain unclear. Here we will highlight the most recent findings suggesting the regulation of JA biosynthesis and ethylene production by stress activated MAPKs and phosphatases that inactivate these MAPKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号