首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
M13 viral strand synthesis is initiated by nicking of the viral strand of the duplex replicative form by the M13 gene II initiator protein at a specific site within a sequence of about 40 base pairs having dyad symmetry. Efficient replication of the M13 viral strand also requires the presence of an adjacent sequence of ca. 100 base pairs. Together these sequences constitute the minimal origin for M13 viral strand synthesis. A pBR322 derivative having a 182-base-pair insert of M13 DNA contains a functional M13 viral strand origin and, when provided with M13 gene functions in trans, replicates under conditions nonpermissive for the parent plasmid. Chimeric plasmids containing deletions within the sequence flanking the viral strand origin are unable to replicate under these conditions. We isolated spontaneous mutants of M13 based on their ability to activate replication of such plasmids. The mutations found in these strains, as well as several produced by oligonucleotide-directed mutagenesis, all result in the substitution of any of at least four different amino acids for a specific glycine residue near the amino-terminal end of the initiator protein. Other studies have shown that overproduction of the wild-type initiator protein also restores replication. These alternate mechanisms are discussed in terms of their striking similarity to the mechanisms of activation of the ras proto-oncogenes which can be activated either by increased expression of the wild-type protein or by substitution of any of several amino acids for a glycine residue near the amino terminus.  相似文献   

5.
6.
7.
M Wassenegger  S Heimes    H L S?nger 《The EMBO journal》1994,13(24):6172-6177
The 359 nucleotides (nt) long potato spindle tuber prototype viroid (PSTVd) is sensitive to experimentally introduced mutations as the substitution or deletion of a single nucleotide usually abolishes its infectivity, although certain sequence alterations are tolerated. This is illustrated by the fact that viroid progeny can evolve in planta upon inoculation with substitution mutants generated in vitro, and by the existence of genetically stable 356-360 nt long PSTVd field isolates. However, to date, no viable in vitro-generated deletion mutant of PSTVd has been reported. We have now found a 341 nt long infectious PSTVd RNA replicon that evolved in agrotransformed plants transformed with the dimeric form of an in vitro-deleted, non-infectious 350 bp long PSTVd cDNA unit by an additional complementary deletion of 9 nt in vivo. This is the first report that the deletion-abolished infectivity of a viroid is restored by an additional deletion that concurrently restabilized its perturbed secondary structure by abandoning an internal segment of the rod-like molecule. The fact that approximately 5% of the total PSTVd RNA genome was deleted demonstrates that the maintenance of this viroid-specific rod-like structure is not only essential for nuclease protection but also for the infectivity, i.e. transmissibility, replicability, processibility and pathogenicity of these minimal infectious agents.  相似文献   

8.
Uracil-DNA glycosylase activity was found in Streptococcus pneumoniae, and the enzyme was partially purified. An ung mutant lacking the activity was obtained by positive selection of cells transformed with a plasmid containing uracil in its DNA. The effects of the ung mutation on mutagenic processes in S. pneumoniae were examined. The sequence of several malM mutations revertible by nitrous acid showed them to correspond to A.T----G.C transitions. This confirmed a prior deduction that nitrous acid action on transforming DNA gave only G.C----A.T mutations. Examination of malM mutant reversion frequencies in ung strains indicated that G.C----A.T mutation rates generally were 10-fold higher than in wild-type strains, presumably owing to lack of repair of deaminated cytosine residues in DNA. No effect of ung on mutation avoidance by the Hex mismatch repair system was observed, which means that uracil incorporation and removal from nascent DNA cannot be solely responsible for producing strand breaks that target nascent DNA for correction after replication. One malM mutation corresponding to an A.T----G.C transition showed a 10-fold-higher spontaneous reversion frequency than other such transitions in a wild-type background. This "hot spot" was located in a directly repeated DNA sequence; it is proposed that transient slippage to the wild-type repeat during replication accounts for the higher reversion frequency.  相似文献   

9.
C1 inhibitor gene sequence facilitates frameshift mutations.   总被引:3,自引:0,他引:3       下载免费PDF全文
Mutations disrupting the function or production of C1 inhibitor cause the disease hereditary angioneurotic edema. Patient mutations identified an imperfect inverted repeat sequence that was postulated to play a mechanistic role in the mutations. To test this hypothesis, the inverted repeat was cloned into the chloramphenicol acetyltransferase gene in pBR325 and its mutation rate was studied in four bacterial strains. These strains were selected to assay the effects of recombination and superhelical tension on mutation frequency. Mutations that revert bacteria to chloramphenicol resistance (Cmr) were scored. Both pairs of isogenic strains had reversion frequencies of approximately 10(-8). These rare reversion events in bacteria were most often a frameshift that involved the imperfect inverted repeat with a deletion or a tandem duplication, an event very similar to the human mutations. Increased DNA superhelical tension, which would be expected to enhance cruciform extrusion, did not accentuate mutagenesis. This finding suggests that the imperfect inverted repeat may form a stem-loop structure in the single-stranded DNA created by the duplex DNA melting prior to replication. Models explaining the slippage can be drawn using the lagging strand of the replication fork. In this model, the formation of a stem-loop structure is responsible for bringing the end of the deletion or duplication into close proximity.  相似文献   

10.
Tilgner M  Shi PY 《Journal of virology》2004,78(15):8159-8171
Using a self-replicating reporting replicon of West Nile (WN) virus, we performed a mutagenesis analysis to define the structure and function of the 3'-terminal 6 nucleotides (nt) (5'-GGAUCU(OH)-3') of the WN virus genome in viral replication. We show that mutations of nucleotide sequence or base pair structure of any of the 3'-terminal 6 nt do not significantly affect viral translation, but exert discrete effects on RNA replication. (i). The flavivirus-conserved terminal 3' U is optimal for WN virus replication. Replacement of the wild-type 3' U with a purine A or G resulted in a substantial reduction in RNA replication, with a complete reversion to the wild-type sequence. In contrast, replacement with a pyrimidine C resulted in a replication level similar to that of the 3' A or G mutants, with only partial reversion. (ii). The flavivirus-conserved 3' penultimate C and two upstream nucleotides (positions 78 and 79), which potentially base pair with the 3'-terminal CU(OH), are absolutely essential for viral replication. (iii). The base pair structures, but not the nucleotide sequences at the 3rd (U) and the 4th (A) positions, are critical for RNA replication. (iv). The nucleotide sequences of the 5th (G) position and its base pair nucleotide (C) are essential for viral replication. (v). Neither the sequence nor the base pair structure of the 6th nucleotide (G) is critical for WN virus replication. These results provide strong functional evidence for the existence of the 3' flavivirus-conserved RNA structure, which may function as contact sites for specific assembly of the replication complex or for efficient initiation of minus-sense RNA synthesis.  相似文献   

11.
Frameshift mutations occur when the coding region of a gene is altered by addition or deletion of a number of base pairs that is not a multiple of three. The occurrence of a deletion versus an insertion type of frameshift depends on the nature of the transient intermediate structure formed during DNA synthesis. Extrahelical bases on the template strand give rise to deletions, whereas extrahelical bases on the strand being synthesized produce insertions. We previously used reversion of a +1 frameshift mutation to analyze the role of the mismatch repair (MMR) machinery in correcting -1 frameshift intermediates within a defined region of the yeast LYS2 gene. In this study, we have used reversion of a -1 frameshift mutation within the same region of LYS2 to analyze the role of the MMR machinery in the correction of frameshift intermediates that give rise to insertion events. We found that insertion and deletion events occur at similar rates but that the reversion spectra are very different in both the wild-type and MMR-defective backgrounds. In addition, analysis of the +1 spectra revealed novel roles for Msh3p and Msh6p in removing specific types of frameshift intermediates.  相似文献   

12.
The origin of replication ( oriR ) involved in the initiation of (-) strand enterovirus RNA synthesis is a quasi-globular multi-domain RNA structure which is maintained by a tertiary kissing interaction. The kissing interaction is formed by base pairing of complementary sequences within the predominant hairpin-loop structures of the enteroviral 3' untranslated region. In this report, we have fully characterised the kissing interaction. Site-directed mutations which affected the different base pairs involved in the kissing interaction were generated in an infectious coxsackie B3 virus cDNA clone. The kissing interaction appeared to consist of 6 bp. Distortion of the interaction by mispairing of each of the base pairs involved in this higher order RNA structure resulted in either temperature sensitive or lethal phenotypes. The nucleotide constitution of the base which gaps the major groove of the kissing domain was not relevant for virus growth. The reciprocal exchange of the complete sequence involved in the kissing resulted in a mutant virus with wild type virus growth characteristics arguing that the base pair constitution is of less importance for the initiation of (-) strand RNA synthesis than the existence of the tertiary structure itself.  相似文献   

13.
The origin of replication for the viral strand of bacteriophage M13 DNA is contained within a 507 base-pair intergenic region of the phage chromosome. The viral strand origin is defined as the specific site at which the M13 gene II protein nicks the duplex replicative form of M13 DNA to initiate rolling-circle synthesis of progeny viral DNA. Using in vitro techniques we have constructed deletion mutations in M13 DNA at the unique AvaI site which is located 45 nucleotides away on the 3' side of the gene II protein nicking site. This deletion analysis has identified a sequence near the viral strand origin that is required for efficient replication of the M13 genome. We refer to this part of the intergenic region as a "replication enhancer" sequence. We have also studied the function of this sequence in chimeric pBR322-M13 plasmids and found that plasmids carrying both the viral strand origin and the replication enhancer sequence interfere with M13 phage replication. Based upon these findings we propose a model for the mechanism of action of the replication enhancer sequence involving binding of the M13 gene II protein.  相似文献   

14.
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.  相似文献   

15.
Resistance of human hepatitis delta virus RNAs to dicer activity   总被引:5,自引:0,他引:5       下载免费PDF全文
Chang J  Provost P  Taylor JM 《Journal of virology》2003,77(22):11910-11917
The endonuclease dicer cleaves RNAs that are 100% double stranded and certain RNAs with extensive but <100% pairing to release approximately 21-nucleotide (nt) fragments. Circular 1,679-nt genomic and antigenomic RNAs of human hepatitis delta virus (HDV) can fold into a rod-like structure with 74% pairing. However, during HDV replication in hepatocytes of human, woodchuck, and mouse origin, no approximately 21-nt RNAs were detected. Likewise, in vitro, purified recombinant dicer gave <0.2% cleavage of unit-length HDV RNAs. Similarly, rod-like RNAs of potato spindle tuber viroid (PSTVd) and avocado sunblotch viroid (ASBVd) were only 0.5% cleaved. Furthermore, when a 66-nt hairpin RNA with 79% pairing, the putative precursor to miR-122, which is an abundant liver micro-RNA, replaced one end of HDV genomic RNA, it was poorly cleaved, both in vivo and in vitro. In contrast, this 66-nt hairpin, in the absence of appended HDV sequences, was >80% cleaved in vitro. Other 66-nt hairpins derived from one end of genomic HDV, PSTVd, or ASBVd RNAs were also cleaved. Apparently, for unit-length RNAs of HDV, PSTVd, and ASBVd, it is the extended structure with <100% base pairing that confers significant resistance to dicer action.  相似文献   

16.
We have investigated whether UV-induced mutations are created with equal efficiency on the leading and lagging strands of DNA replication. We employed an assay system that permits measurement of mutagenesis in the lacZ gene in pairs of near-identical strains. Within each pair, the strains differ only in the orientation of the lacZ gene with respect to the origin of DNA replication. Depending on this orientation, any lacZ target sequence will be replicated in one orientation as a leading strand and as a lagging strand in the other orientation. In contrast to previous results obtained for mutations resulting from spontaneous replication errors or mutations resulting from the spontaneous SOS mutator effect, measurements of UV-induced mutagenesis in uvrA strains fail to show significant differences between the two target orientations. These data suggest that SOS-mediated mutagenic translesion synthesis on the Escherichia coli chromosome may occur with equal or similar probability on leading and lagging strands.  相似文献   

17.
18.
19.
Deletion loop mutagenesis is a new, general method for site-directed mutagenesis that allows point mutations to the introduced within a sequence of DNA defined by a previously isolated deletion mutant. Wild type and deletion mutant DNA are cloned into a bacterial plasmid and each is cleaved with a different single cut restriction enzyme. Heteroduplexes are formed between the two DNAs to produce circular molecules containing a nick in each strand and a single-stranded deletion loop. The deletion loops are mutagenised using sodium bisulphite and the DNA transfected directly into a uracil repair deficient strain of Escherichia coli. Up to half of the resultant clones contain DNA produced by replication of the wild-type length strand and bear mutations exclusively within the target area. An example is given in which a deletion mutant lacking 21 nucleotides from the region coding for SV40 large-T was used. Eight of the possible nine target cytosine residues were mutagenised. The method described is specific, efficient and simple.  相似文献   

20.
R Andino  G E Rieckhof  D Baltimore 《Cell》1990,63(2):369-380
The existence of a computer-predicted cloverleaf structure for the first 100 nucleotides at the 5' end of poliovirus RNA was verified by site-directed mutagenesis and by chemical and RNAase probing. Mutations that modified the cloverleaf in the positive strand but not the negative strand were lethal to the virus. This RNA cloverleaf structure binds a cellular protein and the viral proteins 3Cpro and 3Dpol. Mutations in specific regions of the RNA cloverleaf prevented this binding. Mutations in either 3Cpro or the RNA that disrupted ribonucleoprotein complex formation inhibited virus growth and selectively affected positive strand RNA accumulation. Phenotypic reversion of these mutations restored the ability to form the complex. Thus, a cloverleaf structure in poliovirus RNA plays a central role in organizing viral and cellular proteins involved in positive strand production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号