首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calmodulin-dependent kinase (CaMK) family has been recently recognized to participate in the regulation of osteoclastogenesis. However, there are some controversial reports regarding the mRNA expression patterns of CaMKs during osteoclastogenesis, although the protein expression pattern of most CaMKs during osteoclastogenesis have not been studied. In the present study, we attempted to address this issue by using a mouse bone marrow monocyte model and parallel Western blotting and quantitative real-time PCR. Our results revealed some interesting expression patterns of CaMKs during the process. Among all CaMKs examined, only CaMKIIδ exhibited consistent expression patterns between its mRNA and protein with both rising remarkably during osteoclastogenesis. CaMKIV protein was not detectable during the first three days of cell culture, but it rose on Day 5. The CaMK inhibitor, KN93, subdued osteoclastogenesis during the first three days of cell culture, a time when CaMKIV was absent while other KN93-sensitive CaMKs presented. In addition, KN93 was found to inhibit the expression of some early receptor activator of NF-κB (RANK) signaling intermediates (extracellular signal-regulated kinase (ERK) and Akt) in the non-differentiated mouse bone marrow monocytes. Collectively, these data reveal differential expression patterns of KN93-sensitive CaMK proteins and their mRNAs during osteoclastogenesis, supporting a CaMKII-RANK signaling interaction in the regulation of early osteoclastogenesis.  相似文献   

2.
Treating the mouse intestine with the calmodulin antagonist W-7 and KN-93, an inhibitor of Ca2+ -calmodulin-dependent protein kinase II (CaMK II), reduced the sensitivity of the host to the action of Escherichia coli heat-stable enterotoxin II (STII). CaMK II activity in mouse intestinal cells increased after exposure to STII. These results indicate that CaMK II is involved in the mechanism of action of STII.  相似文献   

3.
4.
The role of CaMK II in regulating GLUT4 expression in response to intermittent exercise was investigated. Wistar rats completed 5 x 17-min bouts of swimming after receiving 5 mg/kg KN93 (a CaMK II inhibitor), KN92 (an analog of KN93 that does not inhibit CaMK II), or an equivalent volume of vehicle. Triceps muscles that were harvested at 0, 6, or 18 h postexercise were assayed for 1) CaMK II phosphorylation by Western blot, 2) acetylation of histone H3 at the Glut4 MEF2 site by chromatin immunoprecipitation (ChIP) assay, 3) bound MEF2A at the Glut4 MEF2 cis-element by ChIP, and 4) GLUT4 expression by RT-PCR and Western blot. Compared with controls, exercise caused a twofold increase in CaMK II phosphorylation. Immunohistochemical stains indicated increased CaMK II phosphorylation in nuclear and perinuclear regions of the muscle fiber. Acetylation of histone H3 in the region surrounding the MEF2 binding site on the Glut4 gene and the amount of MEF2A that bind to the site increased approximately twofold postexercise. GLUT4 mRNA and protein increased approximately 2.2- and 1.8-fold, respectively, after exercise. The exercise-induced increases in CaMK II phosphorylation, histone H3 acetylation, MEF2A binding, and GLUT4 expression were attenuated or abolished when KN93 was administered to rats prior to exercise. KN92 did not affect the increases in pCaMK II and GLUT4. These data support the hypothesis that CaMK II activation by exercise increases GLUT4 expression via increased accessibility of MEF2A to its cis-element on the gene.  相似文献   

5.
We have partially purified a protein kinase from rat pancreas that phosphorylates two light-chain subunits of pancreatic myosin, a doublet with components of 18 and 20 kDa. This protein kinase was purified approx. 1000-fold by sequential (NH4)2SO4 fractionation, gel filtration, ion-exchange and affinity chromatography on calmodulin-Sepharose 4B. The resultant enzyme preparation is free of cyclic AMP-dependent protein kinase, protein kinase C and calmodulin-dependent type I or II kinase activities. The purified protein kinase is completely dependent on Ca2+ and calmodulin, and phosphorylates a 20 kDa light-chain subunit of intact gizzard myosin, suggesting that it belongs to a class of enzymes known as myosin light-chain kinase (MLCK). The apparent Km values of the putative pancreatic MLCK for ATP (73 microM), gizzard myosin light chains (18 microM) and calmodulin (2 nM) are similar to those reported for MLCKs isolated from smooth muscle, platelet and other sources. The enzyme is half-maximally activated at a free Ca2+ concentration of 2.5 microM. A single component of the affinity-purified kinase reacts with antibodies to turkey gizzard MLCK. The apparent molecular mass of this component is 138 kDa. Immunoprecipitation of a pancreatic homogenate with these antibodies decreases calmodulin-dependent kinase activity for pancreatic myosin by over 85%. The immunoprecipitate contains a single electrophoretic band of 138 kDa. Tryptic phosphopeptide analyses of pancreatic myosin, phosphorylated by either gizzard or pancreatic MLCK, are identical. Thus the enzyme that we have purified from rat pancreas is a MLCK, as judged by (1) absolute dependence on Ca2+ and calmodulin, (2) high affinity for calmodulin, (3) narrow substrate specificity for the light-chain subunit of myosin, and (4) reactivity with antibodies to turkey gizzard MLCK. These studies establish the existence of a pancreatic MLCK which may be responsible for regulating myosin phosphorylation and enzyme secretion in situ.  相似文献   

6.
We have previously demonstrated that vasopressin increases the water permeability of the inner medullary collecting duct (IMCD) by inducing trafficking of aquaporin-2 to the apical plasma membrane and that this response is dependent on intracellular calcium mobilization and calmodulin activation. Here, we address the hypothesis that this water permeability response is mediated in part through activation of the calcium/calmodulin-dependent myosin light chain kinase (MLCK) and regulation of non-muscle myosin II. Immunoblotting and immunocytochemistry demonstrated the presence of MLCK, the myosin regulatory light chain (MLC), and the IIA and IIB isoforms of the non-muscle myosin heavy chain in rat IMCD cells. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified two isoforms of MLC, both of which also exist in phosphorylated and non-phosphorylated forms. 32P incubation of the inner medulla followed by autoradiography of two-dimensional gels demonstrated increased 32P labeling of both isoforms in response to the V2 receptor agonist [deamino-Cys1,D-Arg8]vasopressin (DDAVP). Time course studies of MLC phosphorylation in IMCD suspensions (using immunoblotting with anti-phospho-MLC antibodies) showed that the increase in phosphorylation could be detected as early as 30 s after exposure to vasopressin. The MLCK inhibitor ML-7 blocked the DDAVP-induced MLC phosphorylation and substantially reduced [Arg8]vasopressin (AVP)-stimulated water permeability. AVP-induced MLC phosphorylation was associated with a rearrangement of actin filaments (Alexa Fluor 568-phalloidin) in primary cultures of IMCD cells. These results demonstrate that MLC phosphorylation by MLCK represents a downstream effect of AVP-activated calcium/calmodulin signaling in IMCD cells and point to a role for non-muscle myosin II in regulation of water permeability by vasopressin.  相似文献   

7.
Cadmium is a toxic metal with pleiotropic effects on cell death and survival. The mesangial cell is particularly responsive to Cd's effects on kinase signaling pathways and cytoskeletal dynamics. Here we show that CaMK‐II is a participant in the cytoskeletal effects of Cd2+. A major mesangial cell isoform, CaMK‐IIδ, was identified in pellets of DNase I pull‐downs and cytosolic immunoprecipitates of G‐actin. CaMK‐IIδ was also present in Triton X‐100‐insoluble cytoskeletal preparations and translocated to the cytoskeleton in a concentration‐dependent manner in Cd‐treated cells. Translocation was suppressed by KN93, an inhibitor of CaMK‐II phosphorylation. In vitro actin polymerization studies indicated that recombinant CaMK‐IIδ sequestered actin monomer. Cytoskeletal preparations from Cd‐treated cells decrease the rate of polymerization, but KN93 co‐treatment prevents this effect. Over‐expressed CaMK‐IIδ also translocated to the cytoskeleton upon Cd exposure, and this was prevented by KN93. Conversely, siRNA silencing of CaMK‐IIδ increases the effect of cytoskeletal extracts on actin polymerization, and abrogates the effect of Cd. The actin capping and severing protein, gelsolin, translocates to the cytoskeleton in the presence of Cd2+, dependent upon the phosphorylation of CaMK‐II, and is recovered together with actin and CaMK‐IIδ in G‐actin pull‐downs and F‐actin sedimentation. Translocation is accompanied by generation of a 50 kDa gelsolin fragment whose appearance is prevented by KN93 and CaMK‐IIδ silencing. We conclude that cytoskeletal effects of Cd in mesangial cells are partially mediated by Cd‐dependent activation of CaMK‐IIδ, binding of CaMK‐IIδ and gelsolin to actin filaments, and cleavage of gelsolin. J. Cell. Physiol. 228: 78–86, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Degranulation in RBL-2H3 cells: regulation by calmodulin pathway   总被引:1,自引:0,他引:1  
Involvement of the calmodulin pathway in Ca2+-induced degranulation was evaluated in RBL-2H3 mast cells. Pretreatment of RBL-2H3 cells with a calmodulin antagonist, W-13, blocked ionomycin-dependent release of beta-hexosaminidase into the supernatant, although W-13 treatment alone slightly but significantly increased the release. Ca2+/calmodulin activates various protein kinases and phosphatases including myosin-light chain kinase (MLCK), calmodulin-dependent protein kinases (CaMKs), and calcineurin. When RBL-2H3 cells were pretreated with a MLCK inhibitor, ML-7, or a CaMKs inhibitor, KN-93, the ionomycin-dependent release of beta-hexosaminidase into the supernatant was inhibited. In addition, pretreatment with calcineurin inhibitors, cyclosporin A and FR901725, resulted in blockage of the ionomycin-dependent release of beta-hexosaminidase into the supernatant. Our results indicate that Ca2+/calmodulin, activated calmodulin, is indispensable for Ca2+-induced degranulation, and that within the calmodulin pathways, at least MLCK, CaMKs and calcineurin positively regulate the release of granules initiated by increasing cytosolic Ca2+ concentrations in RBL-2H3 cells.  相似文献   

10.
Aldosterone production in zona glomerulosa (ZG) cells of adrenal glands is regulated by various extracellular stimuli (K(+), ANG II, ACTH) that all converge on two major intracellular signaling pathways: an increase in cAMP production and calcium (Ca(2+)) mobilization. However, molecular events downstream of the increase in intracellular cAMP and Ca(2+) content are controversial and far from being completely resolved. Here, we found that Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play a predominant role in the regulation of aldosterone production stimulated by ANG II, ACTH, and cAMP. The specific CaMK inhibitor KN93 strongly reduced ANG II-, ACTH-, and cAMP-stimulated aldosterone production. In in vitro kinase assays and intact cells, we could show that cAMP-induced activation of CaMK, using the adenylate cyclase activator forskolin or the cAMP-analog Sp-5,6-DCI-cBIMPS (cBIMPS), was not mediated by PKA. Activation of the recently identified cAMP target protein Epac (exchange protein directly activated by cAMP) by 8-pCPT-2'-O-Me-cAMP had no effect on CaMK activity and aldosterone production. Furthermore, we provide evidence that cAMP effects in ZG cells do not involve Ca(2+) or MAPK signaling. Our results suggest that ZG cells, in addition to PKA and Epac/Rap proteins, contain other as yet unidentified cAMP mediator(s) involved in regulating CaMK activity and aldosterone secretion.  相似文献   

11.
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 M KN-93, but binding is not affected by 5 M KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 M KN-93, but not by 5 M KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.Abbreviations CaM calmodulin - CaMK (II) Ca2+/calmodulin-dependent protein kinase (II) - CBP CaM-binding protein - CDPK Ca2+-dependent protein kinase - MCK1 maize homolog of mamalian CaMK This work is supported by the National Aeronautics and Space Administration grant No: NAGW 238.  相似文献   

12.
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a serine/threonine kinase that is important in synaptic plasticity and T cell maturation. Activation of CaMKIV requires calcium/calmodulin binding and phosphorylation at T200 by CaMK kinase. Our previous work has shown that protein serine/threonine phosphatase 2A (PP2A) forms a complex with CaMKIV and negatively regulates its activity. Here we demonstrate that PP2A tightly regulates T200 phosphorylation of endogenous CaMKIV, but has little effect on the phosphorylation of the ectopically-expressed kinase. This differential regulation of endogenous versus exogenous CaMKIV is due to differences in their ability to associate with PP2A, as exogenous CaMKIV associates poorly with PP2A in comparison to endogenous CaMKIV. The inability of exogenous CaMKIV to associate with PP2A appears to be due to limiting amounts of endogenous PP2A regulatory B subunits, since coexpression of Bα or Bδ causes the recruitment of PP2Ac to ectopic CaMKIV, leading to formation of a CaMKIV·PP2A complex. Together, these data indicate that the B subunits are essential for the interaction of PP2A with CaMKIV.  相似文献   

13.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

14.
Calreticulin is an ER calcium-storage protein, which influences gene expression and cell adhesion. In this study, we analysed the differences in adhesive properties of calreticulin under- and overexpressing fibroblasts in relation to the calmodulin- and calcium/calmodulin-dependent kinase II (CaMK II)-dependent signalling pathways. Cells stably underexpressing calreticulin had elevated expression of calmodulin, activated CaMK II, activated ERK and activated c-src. Inhibition of calmodulin by W7, and CaMK II by KN-62, caused the otherwise weekly adhesive calreticulin underexpressing cells to behave like the overexpressing cells, via induction of increased cell spreading. Increased vinculin, activated paxillin, activated focal adhesion kinase and fibronectin levels were observed upon inhibition of either the calmodulin or the CaMK II signalling pathways, which was accompanied by an increase in cell spreading and focal contact formation. Both KN-62 and W7 treatment increased cell motility in underexpressing cells, but W7 treatment led to loss of directionality. Thus, both the calmodulin and CaMK II signalling pathways influence cellular spreading and motility, but subtle differences exist in their distal effects on motility effectors.  相似文献   

15.
Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.  相似文献   

16.
17.
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic GnRH neurons. There is accumulating evidence that GnRH neurons have GnRH receptors and that the autocrine action of GnRH activates MAP kinase. In this study, we found that KN93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinases (CaM kinases), inhibited the GnRH-induced activation of MAP kinase in immortalized GnRH neurons (GT1-7 cells). Immunoblot analysis indicated that the CaM kinase IIdelta2 isoform (CaM kinase IIdelta2) and synapsin I were expressed in GT1-7 cells. GnRH treatment rapidly increased phosphorylation of synapsin I at serine 603, a specific phosphorylation site for CaM kinase II, suggesting that GnRH treatment rapidly activated CaM kinase IIdelta2. In addition, when we stably overexpressed CaM kinase IIdelta2 in GT1-7 cells, the activation of MAP kinase was strongly enhanced. These results suggest that CaM kinase IIdelta2 was involved in the GnRH-induced activation of MAP kinase in GT1-7 cells.  相似文献   

18.
The effects of calcium, calmodulin, protein kinase C (PKC) and protein tyrosine kinase (PTK) modulators were examined on the volume-activated taurine efflux in the erythroleukemia cell line K562. Exposure to hypoosmotic solution significantly increased taurine efflux and intracellular calcium concentration ([Ca2+]i). The Ca2+ channel blockers La3+ (1 mM), verapamil (200 microM) and nifedipine (100 microM) inhibited the hypoosmotically-induced [Ca2+]i increase by more than 90%, while the volume-activated taurine efflux was inhibited by 61.3 +/- 9.5, 74.1 +/- 9.3 and 38.0 +/- 1.5%, respectively. Furthermore, the calmodulin inhibitors W7 (50 microM) and trifluoperazine (10 microM) and the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 (2 microM) significantly blocked the volume-activated taurine efflux by 93.4 +/- 2.7, 77.9 +/- 3.5 and 61.3 +/- 15.8%, respectively. In contrast, the PKC inhibitor staurosporine (200 nM) or the PKC activator phorbol 12-myristate 13-acetate (100 nM) did not have significant effects on the volume-activated taurine efflux. However, pretreatment with PTK inhibitors genistein, tyrphostin A25, and tyrphostin A47 blocked the volume-activated taurine efflux. These results suggest that the volume-activated taurine efflux in K562 cells may not directly involve Ca2+, but may require the presence of calmodulin and/or PTK.  相似文献   

19.
Ca2+/calmodulin-dependent protein kinase (CaMK) is an important downstream target of Ca2+ in the hypertrophic signaling pathways. We previously showed that the activation of apoptosis signal-regulating kinase 1 (ASK1) or NF-kappaB is sufficient for cardiomyocyte hypertrophy. Infection of isolated neonatal cardiomyocytes with an adenoviral vector expressing CaMKIIdelta3 (AdCaMKIIdelta3) induced the activation of ASK1, while KN93, an inhibitor of CaMKII, inhibited phenylephrine-induced ASK1 activation. Overexpression of CaMKIIdelta3 induced characteristic features of in vitro cardiomyocyte hypertrophy. Infection of cardiomyocytes with an adenoviral vector expressing a dominant negative mutant of ASK1 (AdASK(KM)) inhibited the CaMKIIdelta3-induced hypertrophic responses. Overexpression of CaMKIIdelta3 increased the kappaB-dependent promoter/luciferase activity and induced IkappaBalpha degradation. Coinfection with AdCaMKIIdelta3 and AdASK(KM), and pre-incubation with KN93 attenuated CaMKIIdelta3- and phenylephrine-induced NF-kappaB activation, respectively. Expression of a degradation resistant mutant of IkappaBalpha inhibited CaMKIIdelta3-induced hypertrophic responses. These results indicate that CaMKIIdelta3 induces cardiomyocyte hypertrophy mediated through ASK1-NF-kappaB signal transduction pathway.  相似文献   

20.
This study was conducted to explore the mechanism by which caffeine increases GLUT4 expression in C(2)C(12) myotubes. Myoblasts were differentiated in DMEM containing 2% horse serum for 13 days and the resultant myotubes exposed to 10 mM caffeine in the presence or absence of 25 microM KN93 or 10 mM dantrolene for 2 h. After the treatment, cells were kept in serum-free medium and harvested between 0 and 6 h later, depending on the assay. Chromatin immunoprecipitation (ChIP) assays revealed that caffeine treatment caused hyperacetylation of histone H3 at the myocyte enhancer factor 2 (MEF2) site on the Glut4 promoter (P < 0.05) and increased the amount of MEF2A that was bound to this site approximately 2.2-fold (P < 0.05) 4 h posttreatment compared with controls. These increases were accompanied by an approximately 1.8-fold rise (P < 0.05 vs. control) in GLUT4 mRNA content at 6 h post-caffeine treatment. Both immunoblot and immunocytochemical analyses showed reduced nuclear content of histone deacetylase-5 in caffeine-treated myotubes compared with controls at 0-2 h posttreatment. Inclusion of 10 mM dantrolene in the medium to prevent the increase in cytosolic Ca(2+), or 25 microM KN93 to inhibit Ca(2+)/calmodulin-dependent protein kinase (CaMK II), attenuated all the above caffeine-induced changes. These data indicate that caffeine increases GLUT4 expression by acetylating the MEF2 site to increase MEF2A binding via a mechanism that involves CaMK II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号