首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
病毒性心肌炎(Viral myocarditis,VMC)是一种由病毒感染所引起的以心肌细胞炎症为特征的疾病。由于病毒性心肌炎的发病机制尚未完全研究清楚,因此该病的诊断及治疗对于临床医生来说仍具有极大的挑战性。非编码RNAs (Non-coding RNAs,ncRNAs)是一类不具有编码蛋白质功能的RNA,越来越多的研究表明ncRNAs参与到调控VMC的发生和发展过程中,这可能成为VMC的治疗或诊断的新研究靶点。文中对近3年来关于ncRNAs在VMC的发病机制及诊断中可能发挥的作用进行了综述。  相似文献   

3.
Non-coding RNAs in human disease   总被引:2,自引:0,他引:2  
The relevance of the non-coding genome to human disease has mainly been studied in the context of the widespread disruption of microRNA (miRNA) expression and function that is seen in human cancer. However, we are only beginning to understand the nature and extent of the involvement of non-coding RNAs (ncRNAs) in disease. Other ncRNAs, such as PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), transcribed ultraconserved regions (T-UCRs) and large intergenic non-coding RNAs (lincRNAs) are emerging as key elements of cellular homeostasis. Along with microRNAs, dysregulation of these ncRNAs is being found to have relevance not only to tumorigenesis, but also to neurological, cardiovascular, developmental and other diseases. There is great interest in therapeutic strategies to counteract these perturbations of ncRNAs.  相似文献   

4.
细胞自噬是真核生物细胞中高度保守的重要代谢途径。该途径是将细胞内有害或不需要的大分子分解并回收,从而使细胞在生长或环境改变导致的应激和压力条件下获得生存优势。近年越来越多的证据表明,非编码RNA,包括微RNA(microRNA,miRNA)和长非编码RNA(long non-coding RNA,lncRNA),在自噬过程中发挥了重要的作用。本文综述了miRNA和lncRNA在多种细胞环境中对细胞自噬的调控机制,并讨论了这些自噬相关的非编码RNA在疾病分子诊断、分类和预后中的作用,及其作为疾病治疗靶标的可能性。  相似文献   

5.
With the completion of large scale genomic sequencing, a great number of non-conding RNAs (ncRNAs) have been discovered and capture the attention of the biological sciences community. All known ncRNAs may be divided into two groups, namely: i—small ncRNAs, which comprise microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and short interfering RNAs (siRNAs), and ii—several thousands of long ncRNAs (lncRNAs). NcRNAs were shown to be involved in eukaryotic growth and development, cell proliferation and differentiation, apoptosis, epigenetic modifications, and also the complex control and pathogenesis of various diseases. In this paper, knowledge on the ncRNAs, which functioning is associated with human diseases, has been summarized.  相似文献   

6.
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.  相似文献   

7.
8.
9.
10.
长非编码RNA(lncRNA)是一类转录本长度大于200个核苷酸的非编码RNA分子,它们在细胞生命活动中的许多关键过程中起到重要调控作用。近年来关于lncRNA的研究发展迅速,涌现出一批用于lncRNA的鉴定、定量、结构分析以及功能预测的生物信息学工具和数据库,本文将对这些lncRNA研究的资源进行综述。  相似文献   

11.
Non-coding RNAs as theranostics in human cancers   总被引:1,自引:0,他引:1  
Theranostics was coined originally as a term used to describe a system that combines diagnosis and therapy, aiming to provide the tools for personalized medicine. This review reasserts the grounds for regarding non-coding RNAs (ncRNA) as theranostics in human cancers. The microRNAs (miRNAs) are the most well studied ncRNAs in recent years; their pivotal role in orchestrating tumor initiation and progression has been confirmed in all types of cancers. Hence, these small ncRNAs have emerged as attractive therapeutic targets and diagnostic tool. Various approaches to use their therapeutic potential have been taken, here we summarize the most important ones. In the near future, the focus of theranostics will be shifted towards longer and mechanistically more versatile ncRNAs, and we included some recent advances supporting this view.  相似文献   

12.
长链非编码RNA(lncRNA)是一类长度大于200bp的非编码RNA,无蛋白质编码功能,物种间保守性差,具有较强的组织特异性和时空特异性。研究表明ncRNA具有广泛的生物学功能,如参与RNA的生成与加工、转录调控、染色质重塑等,且作用机制复杂,如能通过绑定特点蛋白质参与转录调节或作为ceRNA参与转录后调控。但lncRNA的结构复杂,功能研究进展缓慢,目前仍难以对其细致分类。从基本特征、分类、功能、数据库、研究工具及其与癌症之间的关系等方面对lncRNA的研究进展进行综述,以期为lncRNA后续研究提供参考。  相似文献   

13.
Non-coding RNAs as regulators of embryogenesis   总被引:3,自引:0,他引:3  
Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal-zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.  相似文献   

14.
15.
Non-coding RNAs regulate tumor cell plasticity   总被引:1,自引:0,他引:1  
Tumor metastasis is one of the most serious challenges for human cancers as the majority of deaths caused by cancer are associated with metastasis, rather than the primary tumor. Recent studies have demonstrated that tumor cell plasticity plays a critical role in tumor metastasis by giving rise to various cell types which is necessary for tumor to invade adjacent tissues and form distant metastasis. These include differentiation of cancer stem cells (CSCs), or epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET). A growing body of evidence has demonstrated that the biology of tumor cell plasticity is tightly linked to functions of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Therefore, understanding the mechanisms how non-coding RNAs regulate tumor cell plasticity is essential for discovery of new diagnostic markers and therapeutic targets to overcome metastasis.  相似文献   

16.
Non-coding RNAs (ncRNAs) are critical regulators of gene expression in essentially all life forms. Long ncRNAs (lncRNAs) and microRNAs (miRNAs) are two important RNA classes possessing regulatory functions. Up to date, many primate-specific ncRNAs have been identified and investigated. Their expression specificity to primate lineage suggests primate-specific roles. It is thus critical to elucidate the biological significance of primate or even human-specific ncRNAs, and to develop potential ncRNA-based therapeutics. Here, we have summarized the studies regarding regulatory roles of some key primate-specific lncRNAs and miRNAs.  相似文献   

17.
Non-coding RNAs, epigenetics and complexity   总被引:4,自引:0,他引:4  
Costa FF 《Gene》2008,410(1):9-17
Several aspects of epigenetics are strongly linked to non-coding RNAs, especially small RNAs that can direct the cytosine methylation and histone modifications that are implicated in gene expression regulation in complex organisms. A fundamental characteristic of epigenetics is that the same genome can show alternative phenotypes, which are based in different epigenetic states. Some of the most studied complex epigenetic phenomena including transposon activity and silencing recently exemplified by piRNAs (piwi-interacting RNAs), position effect variegation, X-chromosome inactivation, parental imprinting, and paramutation have direct or indirect participation of an RNA component. Conceivably, most of the non-coding RNAs with no described function yet, are players in epigenetic mechanisms that are still not completely understood. In that regard, RNAs were recently implicated in new mechanisms of genetic information transfer in yeast, plants and mice. In this review article, the hypothesis that non-coding RNAs might be the main component of complex organisms acquired during evolution will be explored. The question of how evolutionary theories have been challenged by these molecules in association with epigenetic mechanisms will also be discussed here.  相似文献   

18.
Non-coding RNAs: new players in eukaryotic biology   总被引:21,自引:0,他引:21  
Costa FF 《Gene》2005,357(2):83-94
  相似文献   

19.
随着基因测序技术与核酸定量分析技术的发展,近年的大量研究表明,长链非编码RNA (long non-coding RNA,LncRNA) 通过多种途径调控基因表达,具有调节细胞功能的重要作用。LncRNA的异常表达与肿瘤发生发展之间的联系被广泛关注。其中,关于LncRNA与3种最常见的性激素依赖性肿瘤乳腺癌、子宫内膜癌和前列腺癌的研究,揭示其在肿瘤细胞或组织中扮演着类似于原癌基因或抑癌基因的双重角色。并通过多种调控机制,参与癌细胞的侵袭、增殖、转移等过程。因性激素受体分布的特异性,使得与之相关的多种LncRNA的表达也具有较高的特异性。本文总结LncRNA与乳腺癌、子宫内膜癌和前列腺癌的相关研究进展,包括涉及到的LncRNA种类、表达差异、作用机制及作为生物标志物或治疗靶点的可行性评价。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号