首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pineal gland, through its nocturnal melatonin secretion, mediates the effects of inhibitory (long) and stimulatory (short) photoperiod on reproduction in female sheep. Earlier studies revealed that duration of the nighttime melatonin rise is important in determining the inhibitory effect of day length on reproduction in the ewe. The present study tested whether the duration is also important in mediating the inductive response to short days. Pinealectomized ewes, housed under long days, received a short-day melatonin infusion (16-h duration) for 90 days. Reproductive status was monitored from the response to estradiol negative feedback of luteinizing hormone (LH) secretion. This short-day melatonin pattern led to unambiguous reproductive induction, despite the exposure to inhibitory long days. The increase in serum LH was comparable, in terms of latency and magnitude, to that in pinealectomized controls receiving the same short-day melatonin pattern under short days, and in pineal-intact controls transferred from long to short days. Since the reproductive status conformed to the length of time that melatonin was elevated each day rather than to photoperiod, these results support the conclusion that duration of the nighttime melatonin rise mediates the reproductive response of the ewe to an inductive photoperiod. In all, the melatonin rhythm is considered an integral component of the physiologic mechanism measuring day length; through duration of its nocturnal secretion, melatonin encodes both inhibitory and stimulatory photoperiods.  相似文献   

2.
The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.  相似文献   

3.
The pineal controls the reproductive response of ewes to both stimulatory (short) and inhibitory (long) day lengths. Melatonin, a pineal hormone whose nocturnal secretion is entrained by photoperiod, mediates the effect of stimulatory photoperiod. We now report that melatonin also mediates the effect of inhibitory day length, monitored as response to estradiol negative feedback on luteinizing hormone (LH) secretion. Ovariectomized, estradiol-implanted ewes were pinealectomized and intravenously infused with melatonin to restore the nightly melatonin rise. Following transfer from short to long days, and a concurrent switch from short- to long-day melatonin patterns, LH dropped precipitously in pinealectomized ewes, matching the photoinhibitory response of pineal intact controls. LH dropped similarly in pinealectomized ewes when long-day melatonin was infused under short days. Pinealectomized ewes transferred from long to short days displayed a marked LH rise, provided melatonin was also switched to the short-day pattern. LH remained suppressed if long-day melatonin was infused following transfer to short days. These data indicate the nighttime melatonin rise mediates reproductive responses to inhibitory, as well as stimulatory photoperiods; they further suggest the duration of this rise controls suppression of LH under long days. Rather than being strictly pro- or antigonadal, the pineal participates in measuring day length.  相似文献   

4.
Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty.  相似文献   

5.
Summary A recent study has shown that olfactory bulbectomy (BX) will prevent reproductive regression associated with short photoperiod in male golden hamsters. The results of experiments reported in this paper show that bulbectomized hamsters on long or short photoperiod still show a large nocturnal elevation in pineal melatonin production and that BX inhibits the reproductive regression induced by exogenous melatonin in pinealectomized hamsters. The data therefore indicate that BX does not inhibit short photoperiod induced testicular regression by altering melatonin secretion.  相似文献   

6.
代谢是机体生存和延续的基础,机体通过影响行为并诱发一系列的生理反应,调节代谢状态。能量代谢失衡可能导致机体消瘦或肥胖,甚至会造成生长发育和生殖功能的障碍等。因此,维持机体的能量平衡至关重要,而这一状态的维持受中枢神经系统的严格控制。中枢神经系统,特别是下丘脑,在调节机体生理功能和能量平衡中发挥着重要的作用。下丘脑Kisspeptin被认为在调节性腺轴、营养性发育和生殖中发挥重要作用。近些年来,关于其在能量代谢调控中的作用也引起广泛关注。本文将从能量摄入和能量消耗两个方面对下丘脑Kisspeptin在能量代谢调控中的作用进行综述,以期为防治因能量失衡诱发的代谢性疾病提供新的研究思路和依据。  相似文献   

7.
Photoperiodic manipulation of young European starlings suggests that their reproductive physiology is incapable of responding to a short photoperiod until they are fully grown. This study aimed to determine whether the lack of response to a short photoperiod is reflected in the daily profile of plasma melatonin concentrations. Five-day-old starlings taken from nest boxes showed a significant (p < 0.0001) rhythm in plasma melatonin concentrations, with high values during night. In nestlings hand-reared from 5 days of age on a long photoperiod (LD 16:8), equivalent to natural photoperiod at the time, the amplitude of the daily rhythm in melatonin increased significantly (p < 0.01) with age until birds were fully grown (20 days old). In nestlings reared on a short photoperiod (LD 8:16), the daily melatonin profile remained almost identical to that of long photoperiod birds until they were fully grown. However, after 20 days old, the duration of elevated nighttime melatonin began to extend to encompass the entire period of darkness. In contrast, fully grown starlings transferred from a long to a short photoperiod had partially adapted to the short photoperiod after 5 days; by 10 days, the daily melatonin profile was identical to that of birds held chronically on a short photoperiod. Thus, consistent with responses of reproductive physiology, the pineal of young birds appears to be incapable of perceiving, or adapting to, a short photoperiod.  相似文献   

8.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Daily afternoon injections of 25 micrograms melatonin for 12 weeks had no effect on testicular weights of male rats kept in long photoperiod (14L:10D); similarly, exposure of rats to short photoperiod (2L:22D) had no effect on gonadal weight. However, rats maintained in a long or short photoperiod and implanted every 2 weeks with a 15 mm Silastic pellet containing testosterone showed a significant reduction in testicular weight; this effect was more pronounced in rats exposed to a short photoperiod. Melatonin injections in testosterone-treated rats in a long photoperiod exacerbated the inhibitory effects of testosterone alone. Subcutaneous 2-weekly implants of a beeswax pellet containing 1 mg melatonin reversed the effects of the melatonin injections on relative testicular weights but not those due to short photoperiod exposure. Testosterone implants significantly reduced pituitary LH values in long and short photoperiod-exposed animals, more particularly in those exposed to short photoperiod. Melatonin injections alone or in combination with melatonin pellets did not further exaggerate the depression in pituitary LH due to testosterone alone in long photoperiod-exposed animals; similarly melatonin pellets did not reverse the depression in pituitary LH observed. No significant differences in plasma prolactin concentrations or in thyroxine concentrations or free thyroxine index were observed after any combination of treatments. We therefore suggest that the effects observed with short photoperiod may be due to melatonin.  相似文献   

10.
Syrian hamsters are photoperiodic and become sexually quiescent when exposed to short "winter-like" photoperiods. In short photoperiods, male hamsters display significantly higher levels of aggression than males housed in long photoperiods. Arginine-vasopressin (AVP) within the anterior hypothalamus (AH) has been reported to modulate aggression in hamsters housed in long photoperiods. Previous studies have shown that AVP can facilitate aggression and its effects appear to be mediated by AVP V(1a) receptors (V(1a)R). In the present study, we investigated whether the increased levels of aggression observed after exposure to short photoperiod were the result of an increased responsiveness to AVP within the AH. Injections of AVP into the AH significantly increased aggression in hamsters housed in a long photoperiod, but had no effect in hamsters housed in a short photoperiod. In addition, injection of a V(1a)R antagonist into the AH significantly inhibited aggression in hamsters housed in long photoperiod, but had no effect in hamsters housed in a short photoperiod. These findings indicate that AVP within the AH increases aggression in hamsters housed in long photoperiods, but not in hamsters housed in short photoperiods.  相似文献   

11.
Smith JT 《Peptides》2009,30(1):94-102
In recent years, the Kiss1 gene has been cast into the reproductive spotlight. In the short period since the discovered link between kisspeptins, the encoded peptides of Kiss1, and fertility, these peptides are now known to be critical for the neuroendocrine control of reproduction. Kisspeptin producing cells in the hypothalamus are poised to become the 'missing link' in the sex steroid feedback control of GnRH secretion. These cells contain all the necessary components to relay information of the sex steroid environment to GnRH neurons, which possess the kisspeptin receptor, GPR54. Sex steroids regulate Kiss1 mRNA, and kisspeptin expression in the hypothalamus, in a manner consistent with both negative and positive feedback control of GnRH. The precise nature of sex steroid effects, in particular those of estrogen, on Kiss1 expression have been extensively studied in the female rodent and ewe. In the arcuate nucleus (ARC) of both species, kisspeptin cells appear to forward signals pertinent to negative feedback regulation of GnRH, although in the ewe it appears this population of Kiss1 cell is also responsible for positive feedback regulation of GnRH at the time of the preovulatory GnRH/LH surge. In rodents, these positive feedback signals appear to be mediated by kisspeptin cells exclusively within the anteroventral periventricular nucleus (AVPV). There are no Kiss1 cells in the ovine AVPV, but there is a population in the preoptic area. The role these preoptic area cells play in the sex steroid feedback regulation of GnRH secretion, if any, is yet to be revealed.  相似文献   

12.
We investigated the impact of frequency and pattern of melatonin signals on reproductive development in Siberian hamsters. Juvenile males gestated in short day lengths and housed in constant illumination to suppress melatonin secretion were infused with melatonin for 5 h either once or twice per day for 20 days. Melatonin infusions at either frequency produced equivalent increases in testes and body weights that exceeded those of animals infused with saline but were indistinguishable from those of hamsters transferred to long day lengths. The reproductive system appears to be maximally stimulated by a single short melatonin signal each day. Other animals kept from birth in a short photoperiod were treated 6 h after onset of darkness with the beta-adrenergic receptor antagonist DL-propranolol to shorten melatonin secretion on the night of injection but not on subsequent nights. This permitted interpolation of short nightly melatonin signals of 4-5 h duration against a background of long melatonin signals of 10-12 h duration on other nights. Treatment regimes that maintained a 1:1 ratio of short to long melatonin signals for 8 wk stimulated reproductive development; a 1:2 signal ratio, in each of three different patterns, was uniformly ineffective. The number of successive short melatonin signals had little influence on the interval across which successive melatonin signals were summated to influence photoperiodic traits. The neuroendocrine axis appears more responsive to short melatonin signal frequency than pattern for development of the summer phenotype.  相似文献   

13.
Seasonal changes in pineal function are well coordinated with seasonal reproductive activity of tropical birds. Further, immunomodulatory property of melatonin is well documented in seasonally breeding animals. Present study elucidates the interaction of peripheral melatonin with seasonal pattern of immunity and reproduction in Indian tropical male bird Perdicula asiatica. Significant seasonal changes were noted in pineal, testicular and immune function(s) of this avian species. Maximum pineal activity along with high immune status was noted during winter month while maximum testicular activity with low immune status was noted in summer. During summer month's long photoperiod suppressed pineal activity and high circulating testosterone suppressed immune parameters, while in winter short photoperiod elevated pineal activity and high circulating melatonin maintained high immune status and suppressed gonadal activity. Therefore, seasonal levels of melatonin act like a major temporal synchronizer to maintain not only the seasonal reproduction but also immune adaptability of this avian species.  相似文献   

14.
15.
The present study investigated the functional involvement of melatonin and dopamine in photoperiodism to terminate pupal diapause in the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Diapause in this long‐day (short‐night) species is maintained during long nights and can be terminated by exposure to a short‐night photoperiod. We observed the effects of melatonin and dopamine and their receptor antagonists on diapause pupae. Melatonin and flupentixol, a dopamine receptor antagonist, terminated pupal diapause even under long‐night photoperiods. Dopamine and luzindole, a melatonin receptor antagonist, retarded adult emergence during short nights, whereas melatonin advanced the timing of adult emergence under the short‐night photoperiod in a manner dependent on the number of injections. The results of the day‐length extension experiment indicated that a change in the photoperiod was immediately detected as mRNA expression of the rate‐limiting enzyme of melatonin production. These findings suggest that the melatonin pathway transmits information on the photoperiod to terminate the pupal diapause of A. pernyi. The melatonin pathway also inhibited the dopamine production system, and the dopamine pathway inhibited the melatonin production system. We propose an insect model of the photoperiodic counter driven by mutual inhibition between the melatonin and dopamine pathways.  相似文献   

16.
The present study examines the ovulatory activity of wild and domesticated ewes subjected to either a constant photoperiod of long days (16L:8D) or natural changes in daily photoperiod for 16 mo. The aim was to determine whether an endogenous reproductive rhythm controls seasonal reproductive activity in these sheep, and how the photoperiod might affect this. The effects of long-day photoperiods on long-term changes in prolactin and melatonin secretion were also evaluated. The two species showed changes in reproductive activity under the constant photoperiod conditions, suggesting the existence of an endogenous rhythm of reproduction. This rhythm was differently expressed in the two types of ewe (P < 0.05), with the domestic animals exhibiting much greater sensitivity to the effects of long days. A circannual rhythm of plasma prolactin concentration was also seen in both species and under both photoperiod conditions, although in both species the amplitude was always lower in the long-day animals (P < 0.01). The duration of the nocturnal melatonin plasma concentrations reflected the duration of darkness in both species and treatments. The peak melatonin concentration did not differ between seasons either under natural or long-day photoperiods.  相似文献   

17.
Development of the reproductive apparatus was delayed in grasshopper mice maintained from birth in short photoperiods (10 h light/day). The inhibitory effects of short photoperiods on sexual maturation eventually waned and mice in 10L:14D became reproductively active. Adult mice transferred from long (14 h light/day) to short photoperiods underwent testicular regression after 10 weeks and complete gonadal redevelopment after 30 weeks. A similar phenomenon was observed in adult female mice; oestrous cycles ceased within 3 weeks and resumed after 13 weeks in the short photoperiod. The regressive effects of short photoperiods on the male reproductive system were mimicked by daily injections of melatonin administered to mice housed in 14L:10D. Responsiveness of the female reproductive system to melatonin was reduced among photorefractory as compared to photosensitive mice. We suggest that the initial rate of sexual maturation and the timing of seasonal breeding in adult mice are regulated by photoperiod; effects of short daylengths on the neuroendocrine-reproductive axis appear to be mediated by the pineal gland.  相似文献   

18.
Seasonal cycles in the size of the testes, blood plasma concentration of testosterone, FSH and prolactin, intensity of the sexual skin flush, timing of rutting behaviour and moulting of the body coat were recorded in Soay rams after s.c. implantation of melatonin contained in a Silastic envelope which increased the circulating blood levels of melatonin to 200-600 pg/ml for many months. Two groups of 8 adult rams were held under alternating periods of short days (8L:16D) and long days (16L:8D) to drive the seasonal cycles and the treatments with melatonin were initiated during the long or short days, and one group of 8 ram lambs was kept out of doors and given implants during the long days of summer (4 melatonin-implanted and 4 control (empty implants) rams per group). The treatments demonstrated that melatonin implants during exposure to long days resulted in a rapid 'switch on' of reproductive redevelopment similar to that produced by exposure to short days melatonin implants prevented the rams from showing the normal responses to changes in the prevailing photoperiod rendering them nonphotoperiodic; and long-term cyclic changes in testicular activity, prolactin secretion and other characteristics occurred in the melatonin-implanted rams; the pattern was similar to that previously observed in rams exposed to prolonged periods of short days. The overall results are consistent with the view that melatonin is the physiological hormone that relays the effects of changing photoperiod on reproduction and other seasonal features, and that continuous exogenous melatonin from an implant interferes with the normal 'signal' and produces an over-riding short-day response.  相似文献   

19.
The Djungarian hamster,Phodopus sungorus, shows a clear annual cycle in some thermogenic parameters such as nonshivering thermogenesis (NST) and cold resistance. These seasonal changes were found to be basically controlled by natural changes in photoperiod. Further support for this view was obtained by exposing the hamsters to artificial long and short photoperiods.Implantation of melatonin during fall and winter results in an increased thermogenic capacity in both short and long day hamsters comparable to that shown by values of control hamsters exposed to short photoperiods during winter. This thermotropic action of melatonin and of short photoperiod could be found only in fall and winter whereas during spring and summer, melatonin, like photoperiod, had no influence on thermogenic capacities. These results show that the actions of melatonin and photoperiod vary with the season and that they depend upon the photoperiodic history of the hamsters. Our results further indicate that the pineal gland with its hormone melatonin is involved in mediation of photoperiodic control of seasonal acclimatization.  相似文献   

20.
Cane mice (Zygodontomys brevicauda) are year-round breeders in Venezuela. As shown previously, these animals are not reproductively responsive to variation in photoperiod. In the present experiments, male cane mice were maintained on long or short day lengths (16L:8D or 8L:16D, respectively) and challenged with each of three experimental treatments known to "unmask" reproductive photoresponsiveness in laboratory rats: olfactory bulbectomy, prolonged food restriction, and exposure as neonates to a single injection of testosterone. Variation in photoperiod had no inhibitory effect on the responses of cane mice to any of these three treatments, as assessed by the weight of their testes and seminal vesicles. A fourth experiment demonstrated that cane mice are insensitive to 10 wk of continuous exposure to pharmacological levels of melatonin, again as assessed by reproductive organ weight. Likewise, a fifth experiment documented a lack of response to 10 wk of late-afternoon injections of massive amounts of melatonin. The cane mouse apparently is unique among the animals challenged so far in these ways in that it seems to have no vestige of reproductive photoresponsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号