首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of dietary vitamin E deficiency on mouse cerebral membrane order and oxygen reactive species were studied. Quantitation of vitamin E levels in several brain regions showed greatest deficiencies in striatum and cerebellum, followed by substantia nigra, and cortex. Vitamin E deficiency increased central-core membrane order in cerebral P2 fraction, but was without effect in the superficial hydrophilic membrane domain. Oxygen radical formation was studied using the probe 2',7'-dichlorofluorescein diacetate. Basal generation rates of oxygen reactive species were 2.5-fold higher when compared to control animals. While hepatic levels of vitamin E are much more reduced than brain levels, in deficient mice, the rate of oxygen radical formation in the liver was unaltered. This implies an special susceptibility of the brain to deficiency of this lipophilic antioxidant vitamin. Data demonstrate that endogenous levels of free radical scavengers, such as vitamin E, may play an important role in maintaining basal oxygen radical levels and membrane integrity. The dietary vitamin E depletion paradigm suggests that a relation exists between elevated levels of oxygen radicals and more rigid hydrophobic central-cores in cerebral membranes, effects that may play a role in mechanisms underlying the neuropathologic lesions observed following vitamin E deficiency.  相似文献   

2.
Oxygen Free-Radical Reduction of Brain Capillary Rubidium Uptake   总被引:2,自引:1,他引:1  
Free radicals are proposed to play a role in the injury following cerebral ischemia in which cerebral edema is a prominent feature. To determine whether free radicals might alter the movement of ions and water across the blood-brain barrier, we examined their effect on brain capillary transport. Rat brain capillaries were isolated, incubated with a system that generates free radicals, and various capillary transport systems were studied. Rubidium uptake was reduced 74% whereas rubidium efflux, glucose transport, and capillary water space were unchanged. The results following the addition of radical scavengers indicated that hydrogen peroxide or a related free radical was the toxic species. These data suggest that free radicals can impair capillary endothelial cell mechanisms that help maintain homeostasis of electrolytes and water in brain.  相似文献   

3.
Melatonin secreted by the pineal gland acts as a free radical scavenger besides its role as a hormonal signaling agent. It detoxifies a variety of free radicals and reactive oxygen intermediates including hydroxyl radical, peroxynitrite anion and singlet oxygen. Ascorbic acid (Vitamin C), a water soluble vitamin, is a naturally occurring antioxidant and cofactor in various enzymes. Protein carbonyls are formed as a consequence of the oxidative modification of proteins by reactive oxygen species. Oxidative modification alters the function of protein and is thought to play an important role in the decline of cellular functions during aging. In the present study, the effect of melatonin and ascorbic acid on age-related carbonyl content of cerebral hemispheres in mice was investigated. Protein carbonyls of cerebral hemispheres have been found to be significantly higher in 18-month-old mice as compared to 1-month old mice. Administration of a single dose of melatonin (10 mg/kg body weight) and ascorbic acid (10 mg/kg body weight) intraperitoneally for three consecutive days decreases the carbonyl content in 1- and 18-month-old mice significantly. The present study thus suggests that the formation of protein carbonyls in the cerebral hemispheres of the aging mice can be prevented by the antioxidative effects of melatonin and ascorbic acid that could in turn be beneficial in having health benefits from age-related neurodegenerative diseases.  相似文献   

4.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

5.
Sermet A  Taşdemir N  Deniz B  Atmaca M 《Cytobios》2000,102(401):157-172
Time-dependent changes in the activities of antioxidant enzymes and an oxidant enzyme, xanthine oxidase (XO), were detected in primary and peri-ischaemic brain regions during permanent occlusion of the middle cerebral artery (MCAO) in rats. There were no changes in superoxide dismutase (SOD) and catalase (CAT) activities after 3 h of MCAO, whereas antioxidant enzyme activities decreased significantly in ischaemic brain areas following 24 h of ischaemia. After 48 h, the enzyme activities returned to the baseline but then a further increase was observed in ischaemic brain areas by 72 h post-ischaemia. Normally, XO exists as a dehydrogenase (XD), but it is converted to XO which contributes to injury in some ischaemic tissues. The XO activity increased slightly at 3 h after ischaemia, but after 24 h of ischaemia it returned to the baseline and then remained relatively unchanged in ischaemic areas. Pretreatment with allopurinol before ischaemia prevented changes in SOD and CAT activities and attenuated brain oedema during 24 h of ischaemia. Neither XO nor XD activity changed in allopurinol-treated rats at the times of ischaemia. These results indicated that ischaemic brain tissue remained vulnerable to free radical damage for as long as 48 h after ischaemia, and XO was probably not an important source of free radicals in cerebral ischaemia.  相似文献   

6.
Oxidative stress has been considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. The brain appears to be more susceptible to oxidative damage than other organs. Therefore, the existence of antioxidants may be essential in brain protective systems. The antioxidative and free radical scavenging effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, have been investigated in vitro. The oxidative damage was initiated by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrocholoride) (AAPH) and hydrogen peroxide (H2O2). The linoleic acid peroxidation, DNA and protein damage were monitored by formation of hydroperoxides, by plasmid pBR 322 DNA nicking assay and single-cell alkaline electrophoresis, and by SDS-polyacrylamide gel electrophoresis. Endomorphins can inhibit lipid peroxidation, DNA strand breakage, and protein fragmentation induced by free radical. Endomorphins also reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. In all assay systems, EM1 was more potent than EM2 and GSH, a major intracellular water-soluble antioxidant. We propose that endomorphins are one of the protective systems against free radical-induced damage in the brain.  相似文献   

7.
8.
Abstract: To examine the role played by free radicals in brain injury, we performed experiments to detect radicals in the frontal cortex of rats, using electron spin resonance (ESR) and microdialysis. A dialysis probe was inserted into the frontal cortex, and spin adducts in perfusates were immediately detected by ESR. We obtained a relatively stable doublet signal, with parameters of g = 2.0057 and aH = 0.17 mT. This signal corresponded with that of the ascorbyl radical. Ascorbyl radical in the perfusate collected from the frontal cortex was augmented by microinjection of H2O2 and FeCl2 adjacent to the dialysis probe. When the rats were challenged with cold-induced brain injury, ascorbyl radical and lactate dehydrogenase (LDH) level in the perfusate increased significantly. Pretreatment with superoxide dismutase and catalase attenuated the increase in ascorbyl radical and LDH level induced by the cold injury. Infusion of FeCl2 dissolved in perfusate caused a pronounced increase in ascorbyl radical and LDH level after the cold injury. We conclude that the direct detection of free radical formation further supports the hypothesis that free radicals play an important role in traumatic brain injury. Our findings also indicate that combined microdialysis with ESR spectroscopy is a useful in vivo method for monitoring free radical production in the brain.  相似文献   

9.
Oxidative stress is implicated in the pathogenesis of ischemia/reperfusion injury. Recently, we demonstrated that activation of CD36, a class B scavenger receptor, mediates free radical production and tissue injury in cerebral ischemia (1). Oxidized low density lipoproteins (oxLDL) are among the ligands that bind to CD36 and are elevated in acute cerebral infarction. SS31 is a cell-permeable antioxidant peptide that reduces intracellular free radicals and inhibits LDL oxidation/lipid peroxidation (2). The current study was designed to investigate whether treatment with SS31 normalizes ischemia-induced redox changes and attenuates CD36-mediated tissue injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (MCAO). Redox status and infarct volume were measured in animals treated with either saline or SS31. Oxidative stress induced by ischemia/reperfusion profoundly depleted glutathione (GSH) concentrations in the ipsilateral cortex and striatum. Treating mice with SS31 immediately after reperfusion significantly attenuated ischemia-induced GSH depletion in the cortex and reduced infarct size. By contrast, the protective effect of SS31 was absent in CD36 knock-out mice, indicating that SS31 is acting through inhibition of CD36. Treating C57BL/6 mice with SS31 reduced CD36 expression in postischemic brain and mouse peritoneal macrophages (MPM). Further in vitro studies revealed that SS31 attenuated oxLDL-induced CD36 expression and foam cell formation in MPM. These in vivo and in vitro studies indicate that the down-regulation of CD36 by novel class antioxidant peptides may be a useful strategy to treat ischemic stroke victims.  相似文献   

10.
In our previous experiments, evidence of free radical formation has been demonstrated in gerbil brain after kainic acid (KA) administration. In the present study, the mechanisms involved in KA-induced free radical formation and subsequent cell degeneration were investigated using high density cortical neuron cultures. A free radical trapping agent,a-phenyl-N-tert-butyl-nitrone (PBN), as well as the combined action of superoxide dismutase and catalase attenuated KA neurotoxic effect. Calpain-induced xanthine oxidase (XO) activation may play an important role in KA excitotoxicity since calpain inhibitor I as well as allopurinol, a selective XO inhibitor, significantly protected the cortical neurons from KA-induced cell death. However, XO activation may not be the only source producing free radicals, other free radical generating systems such as nitric oxide synphase may also play a role in KA insult.  相似文献   

11.
Oxidative stress after ischemia/reperfusion has been shown to induce DNA damage and subsequent DNA repair activity. Apurinic/apyrimidinic endonuclease (APE) is a multifunctional protein in the DNA base excision repair pathway which repairs apurinic/apyrimidinic sites in DNA. We investigated the involvement of oxidative stress and expression of APE in neurons after oxygen-glucose deprivation and after global cerebral ischemia. Our results suggest that overexpression of human copper/zinc-superoxide dismutase reduced oxidative stress with a subsequent decrease in APE expression. Production of oxygen free radicals and inhibition of the base excision repair pathway may play pivotal roles in the cell death pathway after ischemia.  相似文献   

12.
F F Ahmad  D L Cowan  A Y Sun 《Life sciences》1987,41(22):2469-2475
alpha-phenyl N-tert-butyl nitrone (PBN) was used as a spin-trapping agent to search for free radical formation in various tissues of gerbils. A significantly large amount of free radicals was detected in liver, kidney, heart, lung and testis after a single intraperitoneal dose of CCl4. We have also detected free radical formation in the brain and blood, although the number of spins was considerably smaller than those found in the other tissues. Free radicals formed in brain tissue after an oxidative insult may give strong supporting evidence for the free radical theory of aging.  相似文献   

13.
Recent work suggests that oxygen radicals may be important mediators of damage in a wide variety of pathologic conditions. In this review we consider the evidence supporting the participation of oxygen radicals in the adult respiratory distress syndrome, in ischemia reperfusion injury in the myocardium, and in cerebral vascular injury in acute hypertension and traumatic brain injury. In the adult respiratory distress syndrome there is active sequestration of polymorphonuclear neutrophils in the pulmonary vascular system. There is evidence that activation of these neutrophils results in the production of oxygen radicals which injure the capillary membrane and increase permeability, leading to progressive hypoxia and decreased lung compliance which are hallmarks of the syndrome. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. The metabolism of arachidonic acid is the source of oxygen free radical production in these conditions. In myocardial ischemia and reperfusion injury, the ischemic myocyte is "primed" for free radical production. With reperfusion and reintroduction of molecular oxygen there is a burst of oxygen radical production resulting in extensive tissue destruction. Myocardial ischemia--reperfusion injury shares in common with the other two syndromes activation of the arachidonic acid cascade and acute inflammation. Thus it would appear that the generation of toxic oxygen species may represent a final common pathway of tissue destruction in several pathophysiologic states.  相似文献   

14.
Role of oxygen free radicals in carcinogenesis and brain ischemia   总被引:39,自引:0,他引:39  
R A Floyd 《FASEB journal》1990,4(9):2587-2597
Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.  相似文献   

15.
Epilepsy is a neurological disorder characterized by spontaneous, recurrent and paroxysmal cerebral discharge, clinically leading to persistent alterations in function and morphology of neurons. Oxidative stress is one of possible mechanisms in the pathogenesis of epilepsy. Oxidative stress resulting from mitochondrial dysfunction gradually disrupts the intracellular calcium homeostasis, which modulates neuronal excitability and synaptic transmission making neurons more vulnerable to additional stress, and leads to neuronal loss in epilepsy. In addition, the high oxidative status is associated with the severity and recurrence of epileptic seizure. Hence, treatment with antioxidants is critically important in epileptic patients through scavenging the excessive free radicals to protect the neuronal loss. In this review, we reviewed the recent findings that focus on the role for antioxidants in prevention of mitochondrial dysfunction and the correlation between oxidative status and disease prognosis in patients with epilepsy.  相似文献   

16.
Oxidative stress is implicated as one of the key causes underlying many diseases. Free radicals are important constituents of basal physiology. Assessment of free radicals or the end products of their action has proved to be difficult. Consequently, authentication of the contribution of free radicals to physiology and pathology has usually been equivocal. Isoprostanes are biosynthesized in vivo, predominantly through free radical attack on arachidonic acid and are now regarded as robust biomarkers of oxidative stress in vivo. Isoprostanes are associated with many human diseases, and their concentration is altered over the course of normal human pregnancy, but their (patho)physiological roles have not yet been clearly defined. Measurement of F2-isoprostanes in body fluids could offer a unique analytical opportunity to study the role of free radicals in physiology and pathophysiology in order to comprehend both oxidative strain and oxidative stress.  相似文献   

17.
In the Pseudomonas aeruginosa-induced rodent pneumonia model, it is thought that free radicals are significantly associated with the disease pathogenesis. However, until now there has been no direct evidence of free radical generation in vivo. Here we used electron spin resonance (ESR) and in vivo spin trapping with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone to investigate free radical production in a murine model. We detected and identified generation of lipid-derived free radicals in vivo (a(N) =14.86 ± 0.03 G and a(H)(β) =2.48 ± 0.09 G). To further investigate the mechanism of lipid radical production, we used modulating agents and knockout mice. We found that with GdCl(3) (phagocytic toxicant), NADPH-oxidase knockout mice (Nox2(-)/(-)), allopurinol (xanthine-oxidase inhibitor) and Desferal (metal chelator), generation of lipid radicals was decreased; histopathological and biological markers of acute lung injury were noticeably improved. Our study demonstrates that lipid-derived free radical formation is mediated by NADPH-oxidase and xanthine-oxidase activation and that metal-catalysed hydroxyl radical-like species play important roles in lung injury caused by Pseudomonas aeruginosa.  相似文献   

18.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献   

19.
Melatonin oxidative stress and neurodegenerative diseases   总被引:3,自引:0,他引:3  
Oxidative Stress is implicated as one of the primary factors that contribute to the development of neurodegenerative diseases like Alzheimer's Disease, Parkinsonism and neurological conditions like epileptic seizures, stroke, brain damage, neurotrauma etc. The increased formation and release of oxygen free radicals coupled with the rather low antioxidative potential of the central nervous system are the major reasons that account for the enhanced oxidative stress seen in neuronal cells. In addition to this, brain is also enriched with polyunsaturated fatty acids that render neuronal cells easily vulnerable to oxidative attack. The fact that there is increased incidence of neurodegenerative disorders in aged individuals, has prompted many investigators to search for a common factor whose progressive decline with increase in age could account for increased oxidative stress resulting in senescence and age associated degenerative diseases. Since melatonin, the hormone secreted from the pineal gland has a remarkable anti-oxidant property and whose rate of production declines with increase in age, has prompted many to suggest that this hormone plays a crucial role in the genesis of neurodegenerative diseases. Melatonin cannot only scavenges oxygen free radicals like super oxide radical (O2-), hydroxyl radical (*OH), peroxyl radical (LOO*) and peroxynitrite anion (ONOO-), but can also enhance the antioxidative potential of the cell by stimulating the synthesis of antioxidative enzymes like super oxide dismutase (SOD), glutathione peroxidase (GPX), and also the enzymes that are involved in the synthesis of glutathione. In many instances, melatonin increases the expression of m RNA's of the antioxidative enzymes. Melatonin administration has been shown to be effective in counteracting the neurodegenerative conditions both in experimental models of neurodegenerative diseases and in patients suffering from such diseases. A disturbance of melatonin rhythm and secretion also has been noted in patients suffering from certain neurodegenerative diseases. From all these, it is evident that melatonin has a neuroprotective role.  相似文献   

20.
Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2′-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号