首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequency and patterns of activity of 106 neurons in the lateral preoptic area of unanesthetized cats were studied under conditions of indolent head fixation. It was shown that this structure contains two somnogenic neuronal populations with different functions. Neurons increasing their discharge frequency during transition from active to quiet wakefulness and subsequent sleep development to the point of phasic stage of paradoxical sleep development are considered as elements of an anti-waking system, which is involved in the mechanisms of sleep onset and deepening by means of inactivation of the arousal system. Neurons displaying the highest firing rates during light slow-wave sleep and synchronization of discharges with sleep spindles are considered as elements of a slow-wave sleep network.  相似文献   

2.

The purpose of this review is to outline the mechanisms responsible for the induction and maintenance of slow-wave sleep (SWS, also named non–rapid eye movement or non-REM sleep). The latest hypothesis on the mechanisms by which cortical activity switches from an activated state during waking to a synchronised state during SWS is presented. It is proposed that the activated cortical state during waking is induced by the activity of multiple waking systems, including the serotonergic, noradrenergic, cholinergic and hypocretin systems located at different subcortical levels. In contrast, the neurons inducing SWS are mainly localized in the ventrolateral preoptic (VLPO) and median preoptic nuclei. These neurons use the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The notion that the switch from waking to SWS is due to the inhibition of the waking systems by the VLPO sleep-active neurons is introduced. At the onset of sleep, the sleep neurons are activated by the circadian clock localized in the suprachiasmatic nucleus and a powerful hypnogenic factor, adenosine, which progressively accumulates in the brain during waking.

  相似文献   

3.
Temporal patterns of unit activity in the mesencephalic reticular nuclei (n. cuneiformis, n. parabrachialis) were studied in unrestrained rats during the sleep-waking cycle; activity was derived by means of movable metallic microelectrodes. Analysis of the data showed that most neurons of these mesencephalic reticular nuclei (76 and 66% respectively) generate activity with the highest frequency during active waking and the emotional stage of paradoxical sleep; they discharge with lower frequency during passive wakefulness and the nonemotional stage of paradoxical sleep, and they exhibit least activity during slow-wave sleep. Comparatively few neurons (24 and 15%) demonstrate the opposite kind of temporal pattern of activity: They discharge more intensively during slow-wave sleep and more slowly during active wakefulness and the emotional stage of paradoxical sleep. Activity of these neurons during quiet wakefulness and the nonemotional stage of paradoxical sleep reaches the level of activity observed during slow-wave sleep. Neurons discharging intensively during active wakefulness were found in n. parabrachialis; their discharge frequency during passive wakefulness and slow-wave sleep and its frequency was least during paradoxical sleep. The similarity and differences of the neurophysiological mechanisms of regulation of the phases and stages of the sleepwaking cycle are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 678–690, September–October, 1984.  相似文献   

4.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

5.
The pattern of neuronal spike activity in the amygdaloid structure was studied in the sleep-wake cycle during experiments on unrestrained rats. It was shown that most neurons of the dorsomedial portion of the amygdala display greater spike activity during active wakefulness (80%) and paradoxical sleep (66.7%) than during slow-wave sleep. Most neurons of the basolateral amygdaloid region discharged at high frequency during active wakefulness (84.6%) and during paradoxial sleep (38.4%) compared with the frequency of firing during slow-wave sleep. Some neurons were found whose rate of discharge rose during slow-wave sleep in comparison with a similar period of paradoxical sleep (38.4%) and of active wakefulness (7.7%). Our findings show how the pattern of neuronal activity in the dosromedial and basolateral regions of the amygdaloid structure differs at various stages of the sleep-wake cycle. It is postulated that this structure serves mainly to regulate emotionally motivated processes rather than helping to govern the basic mechanisms of the sleep-wake cycle.Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 747–756, November–December, 1985.  相似文献   

6.
The dynamics of neuronal activity in the posterior hypothalamus in different phases of the sleep-wake cycle were investigated during experiments on free-ranging cats. The highest frequency discharges were found to occur in 89.3% of neurons belonging to this region during the stages of active wakefulness and emotionally influenced paradoxical sleep. These neurons become less active during restful wakefulness and the unemotional stage of paradoxical sleep; this reduced activity can be most clearly observed in the context of slow-wave sleep. It was found that 7.1% of test neurons discharged at the highest rate during the stage of active wakefulness. They did not achieve an activity level characteristic of active wakefulness during the period of paradoxical sleep, although activity level was higher than during other states. Only 3.6% of neurons followed the opposite pattern, with discharges succeeding more frequently in slow-wave sleep and activity reduced to an equal degree during wakefulness and paradoxical sleep. The neurophysiological mechanisms governing the sleep-wake cycle and how the posterior hypothalamus contributes to these mechanisms are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 160–167, March–April, 1988.  相似文献   

7.
Properties of 187 neurons in the inferior wall of the cruciate sulcus, in an area where electrical stimulation evoked unidirectional saccadic eye movements, were investigated in waking cats. Of the total number 172 responded to visual stimulation. Neurons in the surface layers of the cortex responded to simple visual stimuli: light or dark spots or bars, both stationary and moving at speeds of around 30 deg/sec. These neurons showed no selectivity as regards stimulus orientation but sometimes behaved selectively toward the direction of their movements. In the intermediate layers the maximal neuronal response was obtained to a model of a bird flaping its wings. Neuronal responses in the depth of the cortex were characterized by selectivity to movement of stimuli toward or away from the animal in a certain part of the visual field, irrespective of whether a light stimulus was presented against a dark background or a dark stimulus against the light background. Responses to visual stimulation were exhibited only if the animal was in a state of activation, when the EEG showed desynchronization, and they were absent in a state of quite wakefulness. No responses were obtained to auditory or somatic stimulation. Responses to visual stimulation were not found in neurons of the medial wall of the brain beneath the cruciate sulcus, but responses were recorded to eye movements of definite size or orientation. It is postulated that at least two contiguous retinotopically organized zones exist in this part of the brain. Activity of one of them is connected with visual function, that of the other with eye movements.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 766–773, November–December, 1984.  相似文献   

8.
1. Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation, lateral geniculate bodies, and occipital cortex of many species. 2. PGO waves are associated with increased visual system excitability but arise spontaneously and not via stimulation of the primary visual afferents. Both auditory and somatosensory stimuli influence PGO wave activity. 3. Studies using a variety of techniques suggest that the pontine brain stem is the site of PGO wave generation. Immediately prior to the appearance of PGO waves, neurons located in the region of the brachium conjunctivum exhibit bursts of increased firing, while neurons in the dorsal raphe nuclei show a cessation of firing. 4. The administration of pharmacological agents antagonizing noradrenergic or serotonergic neurotransmission increases the occurrence of PGO waves independent of REM sleep. Cholinomimetic administration increases the occurrence of both PGO waves and other components of REM sleep. 5. Regarding function, the PGO wave-generating network has been postulated to inform the visual system about eye movements, to promote brain development, and to facilitate the response to novel environmental stimuli.  相似文献   

9.
Peripheral administration of lipopolysaccharide (LPS) is associated with alterations in sleep and the electroencephalogram. To evaluate potential neuronal mechanisms for the somnogenic effects of LPS administration, we used unanesthetized rats to survey the firing patterns of neurons in various regions of rat basal forebrain (BF) and hypothalamus during spontaneous sleep and waking and during the epochs of sleep and waking that occurred after the intraperitoneal administration of LPS. In the brain regions studied, LPS administration was associated with altered firing rates in 39% of the neurons examined. A larger proportion of LPS-responsive units showed vigilance-related alterations in firing rates compared with nonresponsive units. Approximately equal proportions of LPS-responsive neurons showed increased and decreased firing rates after LPS administration, with some units in the lateral preoptic area of the hypothalamus showing particularly robust increases. These findings are consistent with other studies showing vigilance-related changes in neuronal activity in various regions of BF and hypothalamus and further demonstrate that peripheral LPS administration alters neuronal firing rates in these structures during both sleep and waking.  相似文献   

10.

Simultaneous changes in sleep and body temperature, produced either by lesion or by stimulation of the medial preoptic area (mPOA), have given reasons to suggest that thermoregulation and sleep regulation are controlled by the same set of neurons. The reasons for simultaneous changes in these parameters are discussed in the present paper with a view to explaining the relationship between thermoregulation and sleep regulation. Changes in body temperature and sleep on destruction of the preoptic area (POA) neurons and the sequence of these changes, suggest a separate control mechanism in the mPOA for regulation of sleep and body temperature. Evidence is put forward in the present paper to show that the mPOA is not involved in the downregulation or upregulation of changes in body temperature with alteration in the vigilance state. On the other hand, circadian modulation of body temperature is possibly involved in altering sleep propensity. A clear indication regarding separate control of sleep and body temperature came from the studies in which noradrenergic agents were applied into the mPOA of animals with and without lesion of the noradrenergic fibers projecting to the mPOA. Experiments in which sleep was analyzed after experimental manipulations of ambient temperature and body temperature, including peripheral, core and brain temperature, are presented here to show a close relationship between thermoregulation and sleep regulation. Various theories regarding the regulation of body temperature during slow wave sleep and rapid eye movement sleep are also discussed. The functional integrity of the mPOA may be essential not only for the regulation of body temperature and sleep-wakefulness but even for the homeostatic regulation of energy balance of the body in response to alterations in environmental temperature and sleep-wakefulness.

  相似文献   

11.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100–250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

12.
Cortical pyramidal neurons alter their responses to input signals depending on behavioral state. We investigated whether changes in somatic inhibition contribute to these alterations. In layer 5 pyramidal neurons of rat visual cortex, repetitive firing from a depolarized membrane potential, which typically occurs during arousal, produced long-lasting depression of somatic inhibition. In contrast, slow membrane oscillations with firing in the depolarized phase, which typically occurs during slow-wave sleep, produced long-lasting potentiation. The depression is mediated by L-type Ca2+ channels and GABA(A) receptor endocytosis, whereas potentiation is mediated by R-type Ca2+ channels and receptor exocytosis. It is likely that the direction of modification is mainly dependent on the ratio of R- and L-type Ca2+ channel activation. Furthermore, somatic inhibition was stronger in slices prepared from rats during slow-wave sleep than arousal. This bidirectional modification of somatic inhibition may alter pyramidal neuron responsiveness in accordance with behavioral state.  相似文献   

13.
Steriade M  Timofeev I 《Neuron》2003,37(4):563-576
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that, during natural slow-wave sleep oscillations or their experimental models, both thalamic and cortical neurons progressively enhance their responsiveness. This potentiation lasts for several minutes after the end of oscillatory periods. Cortical neurons display self-sustained activity, similar to responses evoked during previous epochs of stimulation, despite the fact that thalamic neurons remain under a powerful hyperpolarizing pressure. These data suggest that, far from being a quiescent state during which the cortex and subcortical structures are globally inhibited, slow-wave sleep may consolidate memory traces acquired during wakefulness in corticothalamic networks. Similar phenomena occur as a consequence of fast oscillations during brain-activated states.  相似文献   

14.
Sleep is critical for memory consolidation, although the exact mechanisms mediating this process are unknown. Combining reduced network models and analysis of in vivo recordings, we tested the hypothesis that neuromodulatory changes in acetylcholine (ACh) levels during non-rapid eye movement (NREM) sleep mediate stabilization of network-wide firing patterns, with temporal order of neurons’ firing dependent on their mean firing rate during wake. In both reduced models and in vivo recordings from mouse hippocampus, we find that the relative order of firing among neurons during NREM sleep reflects their relative firing rates during prior wake. Our modeling results show that this remapping of wake-associated, firing frequency-based representations is based on NREM-associated changes in neuronal excitability mediated by ACh-gated potassium current. We also show that learning-dependent reordering of sequential firing during NREM sleep, together with spike timing-dependent plasticity (STDP), reconfigures neuronal firing rates across the network. This rescaling of firing rates has been reported in multiple brain circuits across periods of sleep. Our model and experimental data both suggest that this effect is amplified in neural circuits following learning. Together our data suggest that sleep may bias neural networks from firing rate-based towards phase-based information encoding to consolidate memories.  相似文献   

15.

Background

Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state.

Methodology/Principal Findings

Long-duration, multi-site forebrain field recordings were performed in urethane-anaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (∼11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane.

Conclusions/Significance

Our results suggest that urethane promotes a condition of behavioural unconsciousness that closely mimics the full spectrum of natural sleep. The use of urethane anaesthesia as a model system will facilitate mechanistic studies into sleep-like brain states and their alternations. In addition, it could also be exploited as a tool for the discovery of new molecular targets that are designed to promote sleep without compromising state alternations.  相似文献   

16.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100―250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

17.
To investigate the relative impact of intrinsic and synaptic factors in the maintenance of the membrane potential of cat neocortical neurons in various states of the network, we performed intracellular recordings in vivo. Experiments were done in the intact cortex and in isolated neocortical slabs of anesthetized animals, and in naturally sleeping and awake cats. There are at least four different electrophysiological cell classes in the neocortex. The responses of different neuronal classes to direct depolarization result in significantly different responses in postsynaptic cells. The activity patterns observed in the intact cortex of anesthetized cats depended mostly on the type of anesthesia. The intracellular activity in small neocortical slabs was composed of silent periods, lasting for tens of seconds, during which only small depolarizing potentials (SDPs, presumed miniature synaptic potentials) were present, and relatively short-lasting (a few hundred milliseconds) active periods. Our data suggest that minis might be amplified by intrinsically-bursting neurons and that the persistent Na+ current brings neurons to firing threshold, thus triggering active periods. The active periods in neurons were composed of the summation of synaptic events and intrinsic depolarizing currents. In chronically-implanted cats, slow-wave sleep was characterized by active (depolarizing) and silent (hyperpolarizing) periods. The silent periods were absent in awake cats. We propose that both intrinsic and synaptic factors are responsible for the transition from silent to active states found in naturally sleeping cats and that synaptic depression might be responsible for the termination of active states during sleep. In view of the unexpected high firing rates of neocortical neurons during the depolarizing epochs in slow-wave sleep, we suggest that cortical neurons are implicated in short-term plasticity processes during this state, in which the brain is disconnected from the outside world, and that memory traces acquired during wakefulness may be consolidated during sleep.  相似文献   

18.
I. Episodes of postural atonia associated with bursts of REM similar to those which occur spontaneously either in the intact preparation during desynchronized sleep, or in the chronic decorticate or decerebrate preparations, can be elicited in acute decerebrate cats following intravenous injection of small doses of an anticholinesterase. The present experiments were performed in precollicular decerebrate animals in order to identify the pontine neurons which show increases in their firing rate related in time with the appearance of the cataplectic episodes. In particular long-term recordings of single units were obtained before, during and after the episodes of postural atonia produced by i.v. injection of 0.03-0.1 mg/kg of eserine sulphate. Spontaneous discharge rates were used to measure the selectivity of each individual unit, i.e., the tendency of the unit to discharge more during the cataplectic episode than during the postural rigidity. The physiological data obtained from neurons histologically localized in different nuclear groups were then averaged. 2. Neurons localized in the pontine reticular formation as well as in the region of the locus coeruleus and the raphe system showed low rates of discharge when rigidity was present. The same units, however, showed a remarkable increase in firing rate which preceded by several tenths of seconds the onset of postural atonia and lasted throughout the cataplectic episodes. 3. The neurons of the pontine reticular formation had a selectivity which was higher than that of the neurons located in the locus coeruleus-raphe system; moreover the cells of the gigantocellular tegmental field (FTG) had the highest selectivity of all pontine reticular structures studied. 4. The relation of the discharge rate curves to the occurrence of the cataplectic episodes suggests that these neurons constitute output elements of a generator system for postural atonia. It is postulated that these pontine reticular neurons are directly involved in the activation of the bulbospinal inhibitory system, which is finally responsible for the abolition of the decerebrate rigidity. 5. During cataplectic episodes these pontine neurons showed some clustered discharges which appeared in association with bursts of eye movements. In most instances, however, there was no constant relationship of the unit activity to individual eye movements. Moreover large phasic increases in firing rate appeared also during the intervals between successive bursts of REM. 6. The striking increase in firing rate of the FTG neurons observed during the cataplectic episodes cannot be attributed to an increased excitatory input to these neurons. In fact excitatory influences following intense somatic stimulation are unlikely to occur during the cataplectic episodes; moreover the response of these neurons to intense somatosensory stimulations did not reach rates comparable with those occurring spontaneously during the induced cataplectic episodes...  相似文献   

19.
España RA  Berridge CW  Gammie SC 《Peptides》2004,25(11):1927-1934
The hypocretins modulate arousal via actions across multiple terminal fields. Thus, alterations in hypocretin neurotransmission may contribute to altered sleep patterns observed during lactation. This study examined whether lactation is associated with alterations in the number of hypocretin neurons and in diurnal Fos-immunoreactivity within hypocretin neurons in female mice. Alterations in Fos-immunoreactivity were also examined within two hypocretin terminal regions; the medial preoptic area and the locus coeruleus. Fos-immunoreactivity was increased within hypocretin neurons and the medial preoptic area in lactating females. No differences were observed in the number of hypocretin neurons or in Fos-immunoreactivity within the locus coeruleus.  相似文献   

20.
This is a large cross-sectional study which aimed to investigate comorbidity rate, degree of sleep-related breathing disorder, polysomnigraphically diagnosible rapid eye movement sleep behavior disorder/rapid eye movement sleep without atonia and periodic limb movements during sleep in Japanese drug-naïve patients with narcolepsy-spectrum disorders. A total of 158 consecutive drug naïve patients with narcolepsy with cataplexy, 295 patients with narcolepsy without cataplexy and 395 patients with idiopathic hypersomnia without long sleep time were enrolled. From retrospectively analyzed data of nocturnal polysomnography and multiple sleep latency test, higher rates of periodic limb movements during sleep (> = 15 h-1) (10.2%) and polysomnographically diagnosable rapid eye movement sleep behavior disorder (1.9%) were found in patients with narcolepsy with cataplexy. They had more severe periodic limb movements during sleep especially during rapid eye movement sleep and higher percentages of rapid eye movement sleep without atonia than the other two patient groups. In the present large sample study, Japanese drug naïve patients with narcolepsy with cataplexy showed the highest comorbidity rates of periodic limb movements during sleep, polysomnographically diagnosable rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia among those with the other narcolepsy-spectrum disorders; the rates were lower than those for Western patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号